pub struct IndexedMap<K, T, I> {
    pub idx: I,
    /* private fields */
}
Expand description

IndexedMap works like a Map but has a secondary index

Fields§

§idx: I

This is meant to be read directly to get the proper types, like: map.idx.owner.items(…)

Implementations§

source§

impl<'a, K, T, I> IndexedMap<K, T, I>
where K: PrimaryKey<'a>, T: Serialize + DeserializeOwned + Clone, I: IndexList<T>,

source

pub const fn new(pk_namespace: &'static str, indexes: I) -> Self

Creates a new IndexedMap with the given storage key. This is a constant function only suitable when you have a prefix in the form of a static string slice.

source

pub fn new_dyn(pk_namespace: impl Into<Namespace>, indexes: I) -> Self

Creates a new IndexedMap with the given storage key. Use this if you might need to handle a dynamic string. Otherwise, you should probably prefer IndexedMap::new.

source

pub fn key(&self, k: K) -> Path<T>

source§

impl<'a, K, T, I> IndexedMap<K, T, I>
where K: PrimaryKey<'a>, T: Serialize + DeserializeOwned + Clone, I: IndexList<T>,

source

pub fn save(&self, store: &mut dyn Storage, key: K, data: &T) -> StdResult<()>

save will serialize the model and store, returns an error on serialization issues. this must load the old value to update the indexes properly if you loaded the old value earlier in the same function, use replace to avoid needless db reads

source

pub fn remove(&self, store: &mut dyn Storage, key: K) -> StdResult<()>

source

pub fn replace( &self, store: &mut dyn Storage, key: K, data: Option<&T>, old_data: Option<&T> ) -> StdResult<()>

replace writes data to key. old_data must be the current stored value (from a previous load) and is used to properly update the index. This is used by save, replace, and update and can be called directly if you want to optimize

source

pub fn update<A, E>( &self, store: &mut dyn Storage, key: K, action: A ) -> Result<T, E>
where A: FnOnce(Option<T>) -> Result<T, E>, E: From<StdError>,

Loads the data, perform the specified action, and store the result in the database. This is shorthand for some common sequences, which may be useful.

If the data exists, action(Some(value)) is called. Otherwise action(None) is called.

source

pub fn load(&self, store: &dyn Storage, key: K) -> StdResult<T>

load will return an error if no data is set at the given key, or on parse error

source

pub fn may_load(&self, store: &dyn Storage, key: K) -> StdResult<Option<T>>

may_load will parse the data stored at the key if present, returns Ok(None) if no data there. returns an error on issues parsing

source

pub fn has(&self, store: &dyn Storage, k: K) -> bool

Returns true if storage contains this key, without parsing or interpreting the contents.

source

pub fn clear(&self, store: &mut dyn Storage)

Clears the map, removing all elements.

source

pub fn is_empty(&self, store: &dyn Storage) -> bool

Returns true if the map is empty.

source§

impl<'a, K, T, I> IndexedMap<K, T, I>
where K: PrimaryKey<'a>, T: Serialize + DeserializeOwned + Clone, I: IndexList<T>,

source

pub fn prefix_range_raw<'c>( &self, store: &'c dyn Storage, min: Option<PrefixBound<'a, K::Prefix>>, max: Option<PrefixBound<'a, K::Prefix>>, order: Order ) -> Box<dyn Iterator<Item = StdResult<Record<T>>> + 'c>
where T: 'c, 'a: 'c,

While range_raw over a prefix fixes the prefix to one element and iterates over the remaining, prefix_range_raw accepts bounds for the lowest and highest elements of the Prefix itself, and iterates over those (inclusively or exclusively, depending on PrefixBound). There are some issues that distinguish these two, and blindly casting to Vec<u8> doesn’t solve them.

source§

impl<'a, K, T, I> IndexedMap<K, T, I>
where T: Serialize + DeserializeOwned + Clone, K: PrimaryKey<'a>, I: IndexList<T>,

source

pub fn sub_prefix( &self, p: K::SubPrefix ) -> Prefix<K::SuperSuffix, T, K::SuperSuffix>

source

pub fn prefix(&self, p: K::Prefix) -> Prefix<K::Suffix, T, K::Suffix>

source§

impl<'a, K, T, I> IndexedMap<K, T, I>

source

pub fn prefix_range<'c>( &self, store: &'c dyn Storage, min: Option<PrefixBound<'a, K::Prefix>>, max: Option<PrefixBound<'a, K::Prefix>>, order: Order ) -> Box<dyn Iterator<Item = StdResult<(K::Output, T)>> + 'c>
where T: 'c, K: 'c, K::Output: 'static, 'a: 'c,

While range over a prefix fixes the prefix to one element and iterates over the remaining, prefix_range accepts bounds for the lowest and highest elements of the Prefix itself, and iterates over those (inclusively or exclusively, depending on PrefixBound). There are some issues that distinguish these two, and blindly casting to Vec<u8> doesn’t solve them.

source

pub fn range_raw<'c>( &self, store: &'c dyn Storage, min: Option<Bound<'a, K>>, max: Option<Bound<'a, K>>, order: Order ) -> Box<dyn Iterator<Item = StdResult<Record<T>>> + 'c>
where T: 'c,

source

pub fn keys_raw<'c>( &self, store: &'c dyn Storage, min: Option<Bound<'a, K>>, max: Option<Bound<'a, K>>, order: Order ) -> Box<dyn Iterator<Item = Vec<u8>> + 'c>

source

pub fn range<'c>( &self, store: &'c dyn Storage, min: Option<Bound<'a, K>>, max: Option<Bound<'a, K>>, order: Order ) -> Box<dyn Iterator<Item = StdResult<(K::Output, T)>> + 'c>
where T: 'c, K::Output: 'static,

source

pub fn keys<'c>( &self, store: &'c dyn Storage, min: Option<Bound<'a, K>>, max: Option<Bound<'a, K>>, order: Order ) -> Box<dyn Iterator<Item = StdResult<K::Output>> + 'c>
where T: 'c, K::Output: 'static,

Auto Trait Implementations§

§

impl<K, T, I> Freeze for IndexedMap<K, T, I>
where I: Freeze,

§

impl<K, T, I> RefUnwindSafe for IndexedMap<K, T, I>

§

impl<K, T, I> Send for IndexedMap<K, T, I>
where I: Send, K: Send, T: Send,

§

impl<K, T, I> Sync for IndexedMap<K, T, I>
where I: Sync, K: Sync, T: Sync,

§

impl<K, T, I> Unpin for IndexedMap<K, T, I>
where I: Unpin, K: Unpin, T: Unpin,

§

impl<K, T, I> UnwindSafe for IndexedMap<K, T, I>
where I: UnwindSafe, K: UnwindSafe, T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<U> As for U

source§

fn as_<T>(self) -> T
where T: CastFrom<U>,

Casts self to type T. The semantics of numeric casting with the as operator are followed, so <T as As>::as_::<U> can be used in the same way as T as U for numeric conversions. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.