oscillator_sensi/
oscillator_sensi.rs1use cvode_wrap::*;
2
3fn main() {
4 let y0 = [0., 1.];
5 fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
7 *ydot = [y[1], -y[0] * k];
8 RhsResult::Ok
9 }
10 fn fs(
12 _t: Realtype,
13 y: &[Realtype; 2],
14 _ydot: &[Realtype; 2],
15 ys: [&[Realtype; 2]; N_SENSI],
16 ysdot: [&mut [Realtype; 2]; N_SENSI],
17 k: &Realtype,
18 ) -> RhsResult {
19 *ysdot[0] = [ys[0][1], -ys[0][0] * k];
23 *ysdot[1] = [ys[1][1], -ys[1][0] * k];
24 *ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
25 RhsResult::Ok
26 }
27
28 const N_SENSI: usize = 3;
29
30 let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
32
33 let mut solver = SolverSensi::new(
35 LinearMultistepMethod::Adams,
36 f,
37 fs,
38 0.,
39 &y0,
40 &ys0,
41 1e-4,
42 AbsTolerance::scalar(1e-4),
43 SensiAbsTolerance::scalar([1e-4; N_SENSI]),
44 1e-2,
45 )
46 .unwrap();
47 let ts: Vec<_> = (1..100).collect();
49 println!("0,{},{}", y0[0], y0[1]);
50 for &t in &ts {
51 let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
52 solver.step(t as _, StepKind::Normal).unwrap();
53 println!(
54 "{},{},{},{},{},{},{},{},{}",
55 t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
56 );
57 }
58}