1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
use crate::{
    Bearing, CameraPoint, FeatureMatch, RelativeCameraPose, TriangulatorProject,
    TriangulatorRelative, UnscaledRelativeCameraPose,
};
use derive_more::{AsMut, AsRef, Deref, DerefMut, From, Into};
use nalgebra::{Matrix3, Rotation3, Vector3, SVD};
use num_traits::Float;
use sample_consensus::Model;

/// This stores an essential matrix, which is satisfied by the following constraint:
///
/// transpose(x') * E * x = 0
///
/// Where `x'` and `x` are homogeneous normalized image coordinates. You can get a
/// homogeneous normalized image coordinate by appending `1.0` to a `NormalizedKeyPoint`.
///
/// The essential matrix embodies the epipolar constraint between two images. Given that light
/// travels in a perfectly straight line (it will not, but for short distances it mostly does)
/// and assuming a pinhole camera model, for any point on the camera sensor, the light source
/// for that point exists somewhere along a line extending out from the bearing (direction
/// of travel) of that point. For a normalized image coordinate, that bearing is `(x, y, 1.0)`.
/// That is because normalized image coordinates exist on a virtual plane (the sensor)
/// a distance `z = 1.0` from the optical center (the location of the focal point) where
/// the unit of distance is the focal length. In epipolar geometry, the point on the virtual
/// plane pointing towards the second camera is called an epipole. The line through the image
/// created by the projected points is called an epipolar line, and it extends from the epipole.
///
/// If you look at every point along a projection out of the camera, each one of those points would
/// project onto the epipolar line on the camera sensor of another image.
/// If you traced every point along the projection to where it would appear on the sensor
/// of the camera (projection of the 3d points into normalized image coordinates), then
/// the points would form the epipolar line. This means that you can draw epipolar lines
/// so long as the projection does not pass through the optical center of both cameras.
/// However, that situation is usually impossible, as one camera would be obscuring the feature
/// for the other camera.
///
/// The essential matrix makes it possible to create a vector that is perpendicular to all
/// bearings that are formed from the epipolar line on the second image's sensor. This is
/// done by computing `E * x`, where `x` is a homogeneous normalized image coordinate
/// from the first image. The transpose of the resulting vector then has a dot product
/// with the transpose of the second image coordinate `x'` which is equal to `0.0`.
/// This can be written as:
///
/// ```text
/// dot(transpose(E * x), x') = 0
/// ```
///
/// This can be re-written into the form given above:
///
/// ```text
/// transpose(x') * E * x = 0
/// ```
///
/// Where the first operation creates a pependicular vector to the epipoles on the first image
/// and the second takes the dot product which should result in 0.
///
/// With a `EssentialMatrix`, you can retrieve the rotation and translation given
/// one normalized image coordinate and one bearing that is scaled to the depth
/// of the point relative to the current reconstruction. This kind of point can be computed
/// using [`WorldPose::transform`](crate::WorldPose::transform) to convert a
/// [`WorldPoint`](crate::WorldPoint) to a [`CameraPoint`].
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, AsMut, AsRef, Deref, DerefMut, From, Into)]
pub struct EssentialMatrix(pub Matrix3<f64>);

impl EssentialMatrix {
    /// Can be used to enforce the constraints of an essential matrix to fix it.
    ///
    /// This finds the closest essential matrix in frobenius form. This just means
    /// that the two singular values are averaged and the null singular value is
    /// forced to zero.
    pub fn recondition(self, epsilon: f64, max_iterations: usize) -> Option<Self> {
        let old_svd = self.try_svd(true, true, epsilon, max_iterations)?;
        // We need to sort the singular values in the SVD.
        let mut sources = [0, 1, 2];
        sources.sort_unstable_by_key(|&ix| float_ord::FloatOrd(-old_svd.singular_values[ix]));
        let mut svd = old_svd;
        for (dest, &source) in sources.iter().enumerate() {
            svd.singular_values[dest] = old_svd.singular_values[source];
            svd.u
                .as_mut()
                .unwrap()
                .column_mut(dest)
                .copy_from(&old_svd.u.as_ref().unwrap().column(source));
            svd.v_t
                .as_mut()
                .unwrap()
                .row_mut(dest)
                .copy_from(&old_svd.v_t.as_ref().unwrap().row(source));
        }
        // Now that the singular values are sorted, find the closest
        // essential matrix to E in frobenius form.
        // This consists of averaging the two non-zero singular values
        // and zeroing out the near-zero singular value.
        svd.singular_values[2] = 0.0;
        let new_singular = (svd.singular_values[0] + svd.singular_values[1]) / 2.0;
        svd.singular_values[0] = new_singular;
        svd.singular_values[1] = new_singular;
        // Cannot fail because we asked for both U and V* on decomp.
        let mat = svd.recompose().unwrap();
        Some(Self(mat))
    }

    /// Returns two possible rotations for the essential matrix along with a translation
    /// bearing of arbitrary length. The translation bearing is not yet in the correct
    /// space and the inverse rotation (transpose) must be multiplied by the translation
    /// bearing to make the translation bearing be post-rotation. The translation's length
    /// is unknown and of unknown sign and must be solved for by using a prior.
    ///
    /// `epsilon` is the threshold by which the singular value decomposition is considered
    /// complete. Making this smaller may improve the precision. It is recommended to
    /// set this to no higher than `1e-6`.
    ///
    /// `max_iterations` is the maximum number of iterations that singular value decomposition
    /// will run on this matrix. Use this in soft realtime systems to cap the execution time.
    /// A `max_iterations` of `0` may execute indefinitely and is not recommended.
    ///
    /// ```
    /// # use cv_core::RelativeCameraPose;
    /// # use cv_core::nalgebra::{IsometryMatrix3, Rotation3, Vector3};
    /// let pose = RelativeCameraPose(IsometryMatrix3::from_parts(
    ///     Vector3::new(-0.8, 0.4, 0.5).into(),
    ///     Rotation3::from_euler_angles(0.2, 0.3, 0.4),
    /// ));
    /// // Get the possible poses for the essential matrix created from `pose`.
    /// let (rot_a, rot_b, t) = pose.essential_matrix().possible_rotations_unscaled_translation(1e-6, 50).unwrap();
    /// // Compute residual rotations.
    /// let a_res = rot_a.rotation_to(&pose.rotation).angle();
    /// let b_res = rot_b.rotation_to(&pose.rotation).angle();
    /// let a_close = a_res < 1e-4;
    /// let b_close = b_res < 1e-4;
    /// // At least one rotation is correct.
    /// assert!(a_close || b_close);
    /// // The translation points in the same (or reverse) direction
    /// let t_res = 1.0 - t.normalize().dot(&pose.translation.vector.normalize()).abs();
    /// assert!(t_res < 1e-4);
    /// ```
    pub fn possible_rotations_unscaled_translation(
        &self,
        epsilon: f64,
        max_iterations: usize,
    ) -> Option<(Rotation3<f64>, Rotation3<f64>, Vector3<f64>)> {
        let Self(essential) = *self;
        let essential = essential;

        // `W` from https://en.wikipedia.org/wiki/Essential_matrix#Finding_one_solution.
        let w = Matrix3::new(0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0);
        // Transpose of `W` from https://en.wikipedia.org/wiki/Essential_matrix#Finding_one_solution.
        let wt = w.transpose();

        // Perform SVD.
        let svd = SVD::try_new(essential, true, true, epsilon, max_iterations);
        // Extract only the U and V matrix from the SVD.
        let u_v_t = svd.map(|svd| {
            if let SVD {
                u: Some(u),
                v_t: Some(v_t),
                singular_values,
            } = svd
            {
                // Sort the singular vectors in U and V*.
                let mut sources: [usize; 3] = [0, 1, 2];
                sources.sort_unstable_by_key(|&ix| float_ord::FloatOrd(-singular_values[ix]));
                let mut sorted_u = Matrix3::zeros();
                let mut sorted_v_t = Matrix3::zeros();
                for (&ix, mut column) in sources.iter().zip(sorted_u.column_iter_mut()) {
                    column.copy_from(&u.column(ix));
                }
                for (&ix, mut row) in sources.iter().zip(sorted_v_t.row_iter_mut()) {
                    row.copy_from(&v_t.row(ix));
                }
                (sorted_u, sorted_v_t)
            } else {
                panic!("Didn't get U and V matrix in SVD");
            }
        });
        // Force the determinants to be positive. This is done to ensure the
        // handedness of the rotation matrix is correct.
        let u_v_t = u_v_t.map(|(mut u, mut v_t)| {
            // Last column of U is undetermined since d = (a a 0).
            if u.determinant() < 0.0 {
                for n in u.column_mut(2).iter_mut() {
                    *n *= -1.0;
                }
            }
            // Last row of Vt is undetermined since d = (a a 0).
            if v_t.determinant() < 0.0 {
                for n in v_t.row_mut(2).iter_mut() {
                    *n *= -1.0;
                }
            }
            // Return positive determinant U and V*.
            (u, v_t)
        });
        // Compute the possible rotations and the bearing with no normalization.
        u_v_t.map(|(u, v_t)| {
            (
                Rotation3::from_matrix_unchecked(u * w * v_t),
                Rotation3::from_matrix_unchecked(u * wt * v_t),
                u.column(2).into_owned(),
            )
        })
    }

    /// See [`EssentialMatrix::possible_rotations_unscaled_translation`].
    ///
    /// This returns only the two rotations that are possible.
    ///
    /// ```
    /// # use cv_core::RelativeCameraPose;
    /// # use cv_core::nalgebra::{IsometryMatrix3, Rotation3, Vector3};
    /// let pose = RelativeCameraPose(IsometryMatrix3::from_parts(
    ///     Vector3::new(-0.8, 0.4, 0.5).into(),
    ///     Rotation3::from_euler_angles(0.2, 0.3, 0.4),
    /// ));
    /// // Get the possible rotations for the essential matrix created from `pose`.
    /// let rbs = pose.essential_matrix().possible_rotations(1e-6, 50).unwrap();
    /// let one_correct = rbs.iter().any(|&rot| {
    ///     let angle_residual = rot.rotation_to(&pose.rotation).angle();
    ///     angle_residual < 1e-4
    /// });
    /// assert!(one_correct);
    /// ```
    pub fn possible_rotations(
        &self,
        epsilon: f64,
        max_iterations: usize,
    ) -> Option<[Rotation3<f64>; 2]> {
        self.possible_rotations_unscaled_translation(epsilon, max_iterations)
            .map(|(rot_a, rot_b, _)| [rot_a, rot_b])
    }

    /// See [`EssentialMatrix::possible_rotations_unscaled_translation`].
    ///
    /// This returns the rotations and their corresponding post-rotation translation bearing.
    ///
    /// ```
    /// # use cv_core::RelativeCameraPose;
    /// # use cv_core::nalgebra::{IsometryMatrix3, Rotation3, Vector3};
    /// let pose = RelativeCameraPose(IsometryMatrix3::from_parts(
    ///     Vector3::new(-0.8, 0.4, 0.5).into(),
    ///     Rotation3::from_euler_angles(0.2, 0.3, 0.4),
    /// ));
    /// // Get the possible poses for the essential matrix created from `pose`.
    /// let rbs = pose.essential_matrix().possible_unscaled_poses(1e-6, 50).unwrap();
    /// let one_correct = rbs.iter().any(|&upose| {
    ///     let angle_residual =
    ///         upose.rotation.rotation_to(&pose.rotation).angle();
    ///     let translation_residual =
    ///         1.0 - upose.translation.vector.normalize()
    ///                    .dot(&pose.translation.vector.normalize());
    ///     angle_residual < 1e-4 && translation_residual < 1e-4
    /// });
    /// assert!(one_correct);
    /// ```
    pub fn possible_unscaled_poses(
        &self,
        epsilon: f64,
        max_iterations: usize,
    ) -> Option<[UnscaledRelativeCameraPose; 4]> {
        self.possible_rotations_unscaled_translation(epsilon, max_iterations)
            .map(|(rot_a, rot_b, t)| {
                [
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_a, t)),
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_b, t)),
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_a, -t)),
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_b, -t)),
                ]
            })
    }

    /// Same as [`EssentialMatrix::possible_unscaled_poses`], but it doesn't return
    /// 4 unscaled poses since it doesn't bother to give back the different translation
    /// directions and instead only gives one. This is useful if your algorithm doesn't
    /// care about the direction of translation.
    pub fn possible_unscaled_poses_bearing(
        &self,
        epsilon: f64,
        max_iterations: usize,
    ) -> Option<[UnscaledRelativeCameraPose; 2]> {
        self.possible_rotations_unscaled_translation(epsilon, max_iterations)
            .map(|(rot_a, rot_b, t)| {
                [
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_a, t)),
                    UnscaledRelativeCameraPose(RelativeCameraPose::from_parts(rot_b, t)),
                ]
            })
    }

    /// See [`PoseSolver`].
    ///
    /// Creates a solver that allows you to solve for the pose using correspondences.
    /// The pose may be scaled or unscaled, and if the `alloc` feature is enabled, you
    /// can retrieve the inliers as well.
    pub fn pose_solver(&self) -> PoseSolver<'_> {
        PoseSolver {
            essential: self,
            epsilon: 1e-9,
            max_iterations: 100,
            consensus_ratio: 0.5,
        }
    }
}

impl<P> Model<FeatureMatch<P>> for EssentialMatrix
where
    P: Bearing,
{
    fn residual(&self, data: &FeatureMatch<P>) -> f32 {
        let Self(mat) = *self;
        let FeatureMatch(a, b) = data;
        let normalized = |p: &P| {
            let p = p.bearing_unnormalized();
            p / p.z
        };

        // The result is a 1x1 matrix which we must get element 0 from.
        Float::abs((normalized(b).transpose() * mat * normalized(a))[0] as f32)
    }
}

/// Allows pose solving to be parameterized if defaults are not sufficient.
#[derive(Copy, Clone, Debug)]
pub struct PoseSolver<'a> {
    essential: &'a EssentialMatrix,
    epsilon: f64,
    max_iterations: usize,
    consensus_ratio: f64,
}

impl<'a> PoseSolver<'a> {
    /// Set the epsilon to be used in SVD.
    pub fn epsilon(self, epsilon: f64) -> Self {
        Self { epsilon, ..self }
    }

    /// Set the max number of iterations to be used in SVD.
    pub fn max_iterations(self, max_iterations: usize) -> Self {
        Self {
            max_iterations,
            ..self
        }
    }

    /// Set the level of agreement required for the pose to be accepted.
    pub fn consensus_ratio(self, consensus_ratio: f64) -> Self {
        Self {
            consensus_ratio,
            ..self
        }
    }

    /// Solve the pose given correspondences.
    pub fn solve_unscaled<P>(
        &self,
        triangulator: impl TriangulatorRelative,
        correspondences: impl Iterator<Item = FeatureMatch<P>>,
    ) -> Option<UnscaledRelativeCameraPose>
    where
        P: Bearing + Copy,
    {
        // Get the possible rotations and the translation
        self.essential
            .possible_unscaled_poses(self.epsilon, self.max_iterations)
            .and_then(|poses| {
                // Get the net translation scale of points that agree with a and b
                // in addition to the number of points that agree with a and b.
                let (ts, total) = correspondences.fold(
                    ([0usize; 4], 0usize),
                    |(mut ts, total), FeatureMatch(a, b)| {
                        let trans_and_agree = |pose| {
                            triangulator
                                .triangulate_relative(pose, a, b)
                                .map(|p| {
                                    // Transform the point to camera B to get `tp`.
                                    let tp = pose.transform(p);
                                    // The points must lie in the same direction as their bearings (positive dot product).
                                    p.coords.normalize().dot(&a.bearing()) > 0.0
                                        && tp.coords.normalize().dot(&b.bearing()) > 0.0
                                })
                                .unwrap_or(false)
                        };

                        // Do it for all poses.
                        for (tn, &UnscaledRelativeCameraPose(pose)) in ts.iter_mut().zip(&poses) {
                            if trans_and_agree(pose) {
                                *tn += 1;
                            }
                        }

                        (ts, total + 1)
                    },
                );

                // Ensure that there is at least one point.
                if total == 0 {
                    return None;
                }

                // Ensure that the best one exceeds the consensus ratio.
                let (ix, best) = ts
                    .iter()
                    .copied()
                    .enumerate()
                    .max_by_key(|&(_, t)| t)
                    .unwrap();
                if (best as f64) < self.consensus_ratio * total as f64 && best != 0 {
                    return None;
                }

                Some(poses[ix])
            })
    }

    /// Same as [`PoseSolver::solve_unscaled`], but also communicates the inliers.
    ///
    /// The `alloc` feature must be enabled to use this method.
    #[cfg(feature = "alloc")]
    pub fn solve_unscaled_inliers<P>(
        &self,
        triangulator: impl TriangulatorRelative,
        correspondences: impl Iterator<Item = FeatureMatch<P>>,
    ) -> Option<(UnscaledRelativeCameraPose, alloc::vec::Vec<usize>)>
    where
        P: Bearing + Copy,
    {
        // Get the possible rotations and the translation
        self.essential
            .possible_unscaled_poses(self.epsilon, self.max_iterations)
            .and_then(|poses| {
                // Get the net translation scale of points that agree with a and b
                // in addition to the number of points that agree with a and b.
                let (mut ts, total) = correspondences.enumerate().fold(
                    (
                        [
                            (0usize, alloc::vec::Vec::new()),
                            (0usize, alloc::vec::Vec::new()),
                            (0usize, alloc::vec::Vec::new()),
                            (0usize, alloc::vec::Vec::new()),
                        ],
                        0usize,
                    ),
                    |(mut ts, total), (ix, FeatureMatch(a, b))| {
                        let trans_and_agree = |pose| {
                            triangulator
                                .triangulate_relative(pose, a, b)
                                .map(|p| {
                                    // Transform the point to camera B to get `tp`.
                                    let tp = pose.transform(p);
                                    // The points must lie in the same direction as their bearings (positive dot product).
                                    p.coords.normalize().dot(&a.bearing()) > 0.0
                                        && tp.coords.normalize().dot(&b.bearing()) > 0.0
                                })
                                .unwrap_or(false)
                        };

                        // Do it for all poses.
                        for ((tn, ti), &UnscaledRelativeCameraPose(pose)) in
                            ts.iter_mut().zip(&poses)
                        {
                            if trans_and_agree(pose) {
                                *tn += 1;
                                ti.push(ix);
                            }
                        }

                        (ts, total + 1)
                    },
                );

                // Ensure that there is at least one point.
                if total == 0 {
                    return None;
                }

                // Ensure that the best one exceeds the consensus ratio.
                let (ix, best) = ts
                    .iter()
                    .map(|&(tn, _)| tn)
                    .enumerate()
                    .max_by_key(|&(_, t)| t)
                    .unwrap();
                if (best as f64) < self.consensus_ratio * total as f64 && best != 0 {
                    return None;
                }

                let inliers = core::mem::take(&mut ts[ix].1);

                Some((poses[ix], inliers))
            })
    }

    /// Return the [`RelativeCameraPose`] that transforms a [`CameraPoint`] of image
    /// `A` (source of `a`) to the corresponding [`CameraPoint`] of image B (source of `b`).
    /// This determines the average expected translation from the points themselves and
    /// if the points agree with the rotation (points must be in front of the camera).
    /// The function takes an iterator containing tuples in the form `(depth, a, b)`:
    ///
    /// * `depth` - The actual depth (`z` axis, not distance) of normalized keypoint `a`
    /// * `a` - A keypoint from image `A`
    /// * `b` - A keypoint from image `B`
    ///
    /// `self` must satisfy the constraint:
    ///
    /// ```text
    /// transpose(homogeneous(a)) * E * homogeneous(b) = 0
    /// ```
    ///
    /// Also, `a` and `b` must be a correspondence.
    ///
    /// This will take the average translation over the entire iterator. This is done
    /// to smooth out noise and outliers (if present).
    ///
    /// `epsilon` is a small value to which SVD must converge to before terminating.
    ///
    /// `max_iterations` is the maximum number of iterations that SVD will run on this
    /// matrix. Use this to cap the execution time.
    /// A `max_iterations` of `0` may execute indefinitely and is not recommended except
    /// for non-production code.
    ///
    /// `consensus_ratio` is the ratio of points which must be in front of the camera for the model
    /// to be accepted and return Some. Otherwise, None is returned. Set this to about
    /// `0.45` to have approximate majority consensus.
    ///
    /// `bearing_scale` is a function that is passed a translation bearing vector,
    /// an untranslated (but rotated) camera point, and a normalized key point
    /// where the actual point exists. It must return the scalar which the
    /// translation bearing vector must by multiplied by to get the actual translation.
    /// It may return `None` if it fails.
    ///
    /// `correspondences` must provide an iterator of tuples containing the matches
    /// of a 3d `CameraPoint` `a` from camera A and the matching `NormalizedKeyPoint`
    /// `b` from camera B.
    ///
    /// This does not communicate which points were outliers to each model.
    pub fn solve<P>(
        &self,
        triangulator: impl TriangulatorProject,
        correspondences: impl Iterator<Item = (CameraPoint, P)> + Clone,
    ) -> Option<RelativeCameraPose>
    where
        P: Bearing + Copy,
    {
        // Get the possible rotations and the translation
        self.essential
            .possible_unscaled_poses_bearing(self.epsilon, self.max_iterations)
            .and_then(|poses| {
                // Get the net translation scale of points that agree with a and b
                // in addition to the number of points that agree with a and b.
                let (ts, total) = correspondences.fold(
                    ([(0usize, 0.0); 2], 0usize),
                    |(mut ts, total), (a, b)| {
                        let trans_and_agree = |pose: UnscaledRelativeCameraPose| {
                            let untranslated = pose.rotation * a.0;
                            let t_scale = triangulator.triangulate_project(
                                CameraPoint(untranslated),
                                b,
                                pose.translation.vector,
                            )?;

                            if (untranslated.coords + t_scale * pose.translation.vector)
                                .dot(&b.bearing())
                                > 0.0
                            {
                                Some(t_scale)
                            } else {
                                None
                            }
                        };

                        // Do it for all poses.
                        for (tn, &pose) in ts.iter_mut().zip(&poses) {
                            if let Some(scale) = trans_and_agree(pose) {
                                tn.0 += 1;
                                tn.1 += scale;
                            }
                        }

                        (ts, total + 1)
                    },
                );

                // Ensure that there is at least one point.
                if total == 0 {
                    return None;
                }

                // Ensure that the best one exceeds the consensus ratio.
                let (ix, (best_num, scale_acc)) = ts
                    .iter()
                    .copied()
                    .enumerate()
                    .max_by_key(|&(_, (t, _))| t)
                    .unwrap();
                if (best_num as f64) < self.consensus_ratio * total as f64 && best_num != 0 {
                    return None;
                }
                let scale = scale_acc / best_num as f64;

                Some(RelativeCameraPose::from_parts(
                    poses[ix].rotation,
                    scale * poses[ix].translation.vector,
                ))
            })
    }

    /// Same as [`PoseSolver::solve`], but it also communicates the inliers.
    ///
    /// The `alloc` feature must be enabled to use this method.
    #[cfg(feature = "alloc")]
    pub fn solve_inliers<P>(
        &self,
        triangulator: impl TriangulatorProject,
        correspondences: impl Iterator<Item = (CameraPoint, P)> + Clone,
    ) -> Option<(RelativeCameraPose, alloc::vec::Vec<usize>)>
    where
        P: Bearing + Copy,
    {
        // Get the possible rotations and the translation
        self.essential
            .possible_unscaled_poses_bearing(self.epsilon, self.max_iterations)
            .and_then(|poses| {
                // Get the net translation scale of points that agree with a and b
                // in addition to the number of points that agree with a and b.
                let (mut ts, total) = correspondences.enumerate().fold(
                    (
                        [
                            (0usize, 0.0, alloc::vec::Vec::new()),
                            (0usize, 0.0, alloc::vec::Vec::new()),
                        ],
                        0usize,
                    ),
                    |(mut ts, total), (ix, (a, b))| {
                        let trans_and_agree = |pose: UnscaledRelativeCameraPose| {
                            let untranslated = pose.rotation * a.0;
                            let t_scale = triangulator.triangulate_project(
                                CameraPoint(untranslated),
                                b,
                                pose.translation.vector,
                            )?;

                            if (untranslated.coords + t_scale * pose.translation.vector)
                                .dot(&b.bearing())
                                > 0.0
                            {
                                Some(t_scale)
                            } else {
                                None
                            }
                        };

                        // Do it for all poses.
                        for (tn, &pose) in ts.iter_mut().zip(&poses) {
                            if let Some(scale) = trans_and_agree(pose) {
                                tn.0 += 1;
                                tn.1 += scale;
                                tn.2.push(ix);
                            }
                        }

                        (ts, total + 1)
                    },
                );

                // Ensure that there is at least one point.
                if total == 0 {
                    return None;
                }

                // Ensure that the best one exceeds the consensus ratio.
                let ix = (0..ts.len()).max_by_key(|&ix| ts[ix].0).unwrap();
                let (best_num, scale_acc, best_inliers) = core::mem::take(&mut ts[ix]);
                if (best_num as f64) < self.consensus_ratio * total as f64 && best_num != 0 {
                    return None;
                }

                let scale = scale_acc / best_num as f64;

                Some((
                    RelativeCameraPose::from_parts(
                        poses[ix].rotation,
                        scale * poses[ix].translation.vector,
                    ),
                    best_inliers,
                ))
            })
    }
}