1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
//! A minimal OpenCL, CUDA and host CPU array manipulation engine / framework written in Rust.
//! This crate provides the tools for executing custom array operations with the CPU, as well as with CUDA and OpenCL devices.<br>
//! This guide demonstrates how operations can be implemented for the compute devices: [implement_operations.md](implement_operations.md)<br>
//! or to see it at a larger scale, look here: [custos-math]
//!
//! ## [Examples]
//!
//! [examples]: https://github.com/elftausend/custos/tree/main/examples
//!
//! Using the host CPU as the compute device:
//!
//! [cpu_readme.rs]
//!
//! [cpu_readme.rs]: https://github.com/elftausend/custos/blob/main/examples/cpu_readme.rs
//!
//! ```rust
//! use custos::{CPU, ClearBuf, VecRead, Buffer};
//!
//! let device = CPU::new();
//! let mut a = Buffer::from(( &device, [1, 2, 3, 4, 5, 6]));
//!
//! // specify device for operation
//! device.clear(&mut a);
//! assert_eq!(device.read(&a), [0; 6]);
//!
//! let device = CPU::new();
//!
//! let mut a = Buffer::from(( &device, [1, 2, 3, 4, 5, 6]));
//! a.clear();
//!
//! assert_eq!(a.read(), vec![0; 6]);
//! ```
use std::{ffi::c_void, ptr::null_mut};
//pub use libs::*;
pub use buffer::*;
pub use count::*;
pub use devices::*;
pub use graph::*;
pub use error::*;
pub use devices::cpu::CPU;
#[cfg(feature = "cuda")]
pub use devices::cuda::CudaDevice;
#[cfg(feature = "opencl")]
pub use devices::opencl::{CLDevice, InternCLDevice};
pub mod devices;
mod buffer;
mod count;
mod graph;
mod error;
pub mod number;
/// Used to determine which device type [`Device`] is of.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeviceType {
CPU = 0,
#[cfg(feature = "cuda")]
CUDA = 1,
#[cfg(feature = "opencl")]
CL = 2,
None = 3,
}
/// `Device` is another representation of a compute device.<br>
/// It stores the type of the device and a pointer to the device from which `Device` originates from.<br>
/// This is used instead of another "device" generic for [`Buffer`].
///
/// # Example
/// ```rust
/// use custos::{CPU, AsDev, Device, DeviceType};
///
/// let cpu = CPU::new();
/// let device: Device = cpu.dev();
/// assert_eq!(device.device_type, DeviceType::CPU);
/// assert_eq!(device.device as *const CPU, &cpu as *const CPU);
/// ```
#[derive(Debug, Clone, Copy)]
pub struct Device {
pub device_type: DeviceType,
pub device: *mut u8,
}
impl Default for Device {
fn default() -> Self {
Self {
device_type: DeviceType::None,
device: null_mut(),
}
}
}
thread_local! {
pub static GLOBAL_CPU: CPU = CPU::new();
}
/// This trait is for allocating memory on the implemented device.
///
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev, GraphReturn};
///
/// let device = CPU::new();
/// let ptrs: (*mut f32, *mut std::ffi::c_void, u64) = device.alloc(12);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 12,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// node: device.graph().add_leaf(12),
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![0.; 12], device.read(&buf));
/// ```
pub trait Alloc<T> {
/// Allocate memory on the implemented device.
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev, GraphReturn};
///
/// let device = CPU::new();
/// let ptrs: (*mut f32, *mut std::ffi::c_void, u64) = device.alloc(12);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 12,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// node: device.graph().add_leaf(12),
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![0.; 12], device.read(&buf));
/// ```
fn alloc(&self, len: usize) -> (*mut T, *mut c_void, u64);
/// Allocate new memory with data
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev, GraphReturn};
///
/// let device = CPU::new();
/// let ptrs: (*mut u8, *mut std::ffi::c_void, u64) = device.with_data(&[1, 5, 4, 3, 6, 9, 0, 4]);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 8,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// node: device.graph().add_leaf(8),
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![1, 5, 4, 3, 6, 9, 0, 4], device.read(&buf));
/// ```
fn with_data(&self, data: &[T]) -> (*mut T, *mut c_void, u64)
where
T: Clone;
/// If the vector `vec` was allocated previously, this function can be used in order to reduce the amount of allocations, which may be faster than using a slice of `vec`.
fn alloc_with_vec(&self, vec: Vec<T>) -> (*mut T, *mut c_void, u64)
where
T: Clone,
{
self.with_data(&vec)
}
/// Creates a generic representation of the device
fn as_dev(&self) -> Device;
}
/// Trait for implementing the clear() operation for the compute devices.
pub trait ClearBuf<T> {
/// Sets all elements of the matrix to zero.
/// # Example
/// ```
/// use custos::{CPU, ClearBuf, Buffer};
///
/// let device = CPU::new();
/// let mut a = Buffer::from((&device, [2, 4, 6, 8, 10, 12]));
/// assert_eq!(a.read(), vec![2, 4, 6, 8, 10, 12]);
///
/// device.clear(&mut a);
/// assert_eq!(a.read(), vec![0; 6]);
/// ```
fn clear(&self, buf: &mut Buffer<T>);
}
/// Trait for reading buffers.
pub trait VecRead<T> {
/// Read the data of a buffer into a vector
/// # Example
/// ```
/// use custos::{CPU, Buffer, VecRead};
///
/// let device = CPU::new();
/// let a = Buffer::from((&device, [1., 2., 3., 3., 2., 1.,]));
/// let read = device.read(&a);
/// assert_eq!(vec![1., 2., 3., 3., 2., 1.,], read);
/// ```
fn read(&self, buf: &Buffer<T>) -> Vec<T>;
}
/// Trait for writing data to buffers.
pub trait WriteBuf<T> {
/// Write data to the buffer.
/// # Example
/// ```
/// use custos::{CPU, Buffer, WriteBuf};
///
/// let device = CPU::new();
/// let mut buf = Buffer::new(&device, 4);
/// device.write(&mut buf, &[9, 3, 2, -4]);
/// assert_eq!(buf.as_slice(), &[9, 3, 2, -4])
///
/// ```
fn write(&self, buf: &mut Buffer<T>, data: &[T]);
/// Writes data from <Device> Buffer to other <Device> Buffer.
// TODO: implement, change name of fn? -> set_.. ?
fn write_buf(&self, _dst: &mut Buffer<T>, _src: &Buffer<T>) {
unimplemented!()
}
}
/// This trait is used to clone a buffer based on a specific device type.
pub trait CloneBuf<'a, T> {
/// Creates a deep copy of the specified buffer.
/// # Example
///
/// ```
/// use custos::{CPU, Buffer, CloneBuf};
///
/// let device = CPU::new();
/// let buf = Buffer::from((&device, [1., 2., 6., 2., 4.,]));
///
/// let cloned = device.clone_buf(&buf);
/// assert_eq!(buf.read(), cloned.read());
/// ```
fn clone_buf(&'a self, buf: &Buffer<'a, T>) -> Buffer<'a, T>;
}
/// This trait is used to retrieve a cached buffer from a specific device type.
pub trait CacheBuf<'a, T> {
#[cfg_attr(feature = "realloc", doc = "```ignore")]
/// Adds a buffer to the cache. Following calls will return this buffer, if the corresponding internal count matches with the id used in the cache.
/// # Example
/// ```
/// use custos::{CPU, VecRead, set_count, get_count, CacheBuf};
///
/// let device = CPU::new();
/// assert_eq!(0, get_count());
///
/// let mut buf = CacheBuf::<f32>::cached(&device, 10);
/// assert_eq!(1, get_count());
///
/// for value in buf.as_mut_slice() {
/// *value = 1.5;
/// }
///
/// set_count(0);
/// let buf = CacheBuf::<f32>::cached(&device, 10);
/// assert_eq!(device.read(&buf), vec![1.5; 10]);
/// ```
fn cached(&'a self, len: usize) -> Buffer<'a, T>;
}
/// This trait is a non-generic variant for calling [`Alloc`]'s `Alloc::<T>::as_dev(..)`
pub trait AsDev {
fn dev(&self) -> Device
where
Self: Alloc<u8> + Sized,
{
Alloc::as_dev(self)
}
}
/// Return a device that implements the trait provided thus giving access to the functions implemented by the trait.
///
/// # Example
/// ```
/// use custos::{Error, CPU, get_device, VecRead, AsDev, Buffer};
///
/// fn main() -> Result<(), Error> {
/// let device = CPU::new();
/// let read = get_device!(device.dev(), VecRead<f32>);
///
/// let buf = Buffer::from(( &device, [1.51, 6.123, 7., 5.21, 8.62, 4.765]));
/// let read = read.read(&buf);
/// assert_eq!(read, vec![1.51, 6.123, 7., 5.21, 8.62, 4.765]);
/// Ok(())
/// }
/// ```
#[macro_export]
macro_rules! get_device {
($device:expr, $t:ident<$g:ident>) => {{
use $crate::{ DeviceType, CPU };
let device: &dyn $t<$g> = unsafe {
//&*($device.device as *mut CPU)
match $device.device_type {
DeviceType::CPU => &*($device.device as *mut CPU),
#[cfg(feature="cuda")]
DeviceType::CUDA => &*($device.device as *mut $crate::CudaDevice),
#[cfg(feature="opencl")]
DeviceType::CL => &*($device.device as *mut $crate::CLDevice),
// TODO: convert to error
_ => panic!(
"No device found to execute this operation with.
If you are using get_device! in your own crate,
you need to add 'opencl' and 'cuda' as features in your Cargo.toml."
),
}
};
device
}}
}