1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
//! custos is a minimal OpenCL, CUDA and host CPU array manipulation engine / framework.
//! It provides some matrix / buffer operations: matrix multiplication (BLAS, cuBLAS), element-wise arithmetic (vector addition, ...), set all elements to zero (or default value).
//! To use more operations: [custos-math]
//!
//! [custos-math]: https://github.com/elftausend/custos-math
//!
//! ## [Examples]
//!
//! [examples]: https://github.com/elftausend/custos/tree/main/examples
//!
//! Using the host CPU as the compute device:
//!
//! [cpu_readme.rs]
//!
//! [cpu_readme.rs]: https://github.com/elftausend/custos/blob/main/examples/cpu_readme.rs
//!
//! ```rust
//! use custos::{CPU, ClearBuf, VecRead, Buffer};
//!
//! let device = CPU::new();
//! let mut a = Buffer::from(( &device, [1, 2, 3, 4, 5, 6]));
//!
//! // specify device for operation
//! device.clear(&mut a);
//! assert_eq!(device.read(&a), [0; 6]);
//!
//! let device = CPU::new();
//!
//! let mut a = Buffer::from(( &device, [1, 2, 3, 4, 5, 6]));
//! a.clear();
//!
//! assert_eq!(a.read(), vec![0; 6]);
//! ```
use std::{ffi::c_void, ptr::null_mut};
//pub use libs::*;
pub use buffer::*;
pub use count::*;
pub use libs::*;
pub use libs::cpu::CPU;
#[cfg(feature = "cuda")]
pub use libs::cuda::CudaDevice;
#[cfg(feature = "opencl")]
pub use libs::opencl::{CLDevice, InternCLDevice};
pub mod libs;
mod buffer;
mod count;
pub mod number;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DeviceType {
CPU = 0,
#[cfg(feature="cuda")]
CUDA = 1,
#[cfg(feature="opencl")]
CL = 2,
None = 3,
}
#[derive(Debug, Clone, Copy)]
pub struct Device {
pub device_type: DeviceType,
pub device: *mut u8
}
impl Default for Device {
fn default() -> Self {
Self { device_type: DeviceType::None, device: null_mut() }
}
}
thread_local! {
pub static GLOBAL_CPU: CPU = CPU::new();
}
pub struct Error {
pub error: Box<dyn std::error::Error + Send>,
}
impl<E: std::error::Error + PartialEq + 'static> PartialEq<E> for Error {
fn eq(&self, other: &E) -> bool {
let e = self.error.downcast_ref::<E>();
if let Some(e) = e {
return e == other;
}
false
}
}
impl From<Error> for Box<dyn std::error::Error> {
fn from(e: Error) -> Self {
e.error
}
}
impl Error {
pub fn kind<E: std::error::Error + PartialEq + 'static>(&self) -> Option<&E> {
self.error.downcast_ref::<E>()
}
}
impl<T: std::error::Error + Send + 'static> From<T> for Error {
fn from(error: T) -> Self {
Error {
error: Box::new(error),
}
}
}
impl core::fmt::Debug for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self.error)?;
Ok(())
}
}
impl core::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.error)?;
Ok(())
}
}
pub type Result<T> = std::result::Result<T, Error>;
/// Manage device memory
///
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev};
///
/// let device = CPU::new();
/// let ptrs: (*mut f32, *mut std::ffi::c_void, u64) = device.alloc(12);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 12,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![0.; 12], device.read(&buf));
/// ```
pub trait Alloc<T> {
/// Allocate memory
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev};
///
/// let device = CPU::new();
/// let ptrs: (*mut f32, *mut std::ffi::c_void, u64) = device.alloc(12);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 12,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![0.; 12], device.read(&buf));
/// ```
fn alloc(&self, len: usize) -> (*mut T, *mut c_void, u64);
/// Allocate new memory with data
/// # Example
/// ```
/// use custos::{CPU, Alloc, Buffer, VecRead, BufFlag, AsDev};
///
/// let device = CPU::new();
/// let ptrs: (*mut u8, *mut std::ffi::c_void, u64) = device.with_data(&[1, 5, 4, 3, 6, 9, 0, 4]);
///
/// let buf = Buffer {
/// ptr: ptrs,
/// len: 8,
/// device: AsDev::dev(&device),
/// flag: BufFlag::None,
/// p: std::marker::PhantomData
/// };
/// assert_eq!(vec![1, 5, 4, 3, 6, 9, 0, 4], device.read(&buf));
/// ```
fn with_data(&self, data: &[T]) -> (*mut T, *mut c_void, u64);
fn alloc_with_vec(&self, vec: Vec<T>) -> (*mut T, *mut c_void, u64) {
self.with_data(&vec)
}
fn as_dev(&self) -> Device;
}
///All 'base' traits?
pub trait BaseDevice<T>: Alloc<T> + VecRead<T> {}
pub trait ClearBuf<T> {
/// Sets all elements of the matrix to zero.
/// # Example
/// ```
/// use custos::{CPU, ClearBuf, Buffer};
///
/// let device = CPU::new();
/// let mut a = Buffer::from((&device, [2, 4, 6, 8, 10, 12]));
/// assert_eq!(a.read(), vec![2, 4, 6, 8, 10, 12]);
///
/// device.clear(&mut a);
/// assert_eq!(a.read(), vec![0; 6]);
/// ```
fn clear(&self, buf: &mut Buffer<T>);
}
/// Trait for reading buffers.
pub trait VecRead<T> {
/// Read the data of a buffer into a vector
/// # Example
/// ```
/// use custos::{CPU, Buffer, VecRead};
///
/// let device = CPU::new();
/// let a = Buffer::from((&device, [1., 2., 3., 3., 2., 1.,]));
/// let read = device.read(&a);
/// assert_eq!(vec![1., 2., 3., 3., 2., 1.,], read);
/// ```
fn read(&self, buf: &Buffer<T>) -> Vec<T>;
}
/// Trait for writing data to buffers.
pub trait WriteBuf<T> {
/// Write data to the buffer.
/// # Example
/// ```
/// use custos::{CPU, Buffer, WriteBuf};
///
/// let device = CPU::new();
/// let mut buf = Buffer::new(&device, 4);
/// device.write(&mut buf, &[9, 3, 2, -4]);
/// assert_eq!(buf.as_slice(), &[9, 3, 2, -4])
///
/// ```
fn write(&self, buf: &mut Buffer<T>, data: &[T]);
/// Write data from <Device> Buffer to other <Device> Buffer.
// TODO: implement, change name of fn? -> set_.. ?
fn write_buf(&self, _dst: &mut Buffer<T>, _src: &Buffer<T>) {
unimplemented!()
}
}
trait ManualMem<T> {
fn drop_buf(&self, buf: Buffer<T>);
}
pub trait CacheBuf<'a, T> {
/// Adds a buffer to the cache. Following calls will return this buffer, if the corresponding internal count matches with the id used in the cache.
/// # Example
/// ```
/// use custos::{CPU, VecRead, set_count, get_count, CacheBuf};
///
/// let device = CPU::new();
/// assert_eq!(0, get_count());
///
/// let mut buf = CacheBuf::<f32>::cached(&device, 10);
/// assert_eq!(1, get_count());
///
/// for value in buf.as_mut_slice() {
/// *value = 1.5;
/// }
///
/// set_count(0);
/// let buf = CacheBuf::<f32>::cached(&device, 10);
/// assert_eq!(device.read(&buf), vec![1.5; 10]);
/// ```
fn cached(&'a self, len: usize) -> Buffer<'a, T>;
}
pub trait AsDev {
fn dev(&self) -> Device
where
Self: Alloc<u8> + Sized,
{
Alloc::as_dev(self)
}
}
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum DeviceError {
ConstructError,
CPUtoCUDA,
}
impl DeviceError {
pub fn as_str(&self) -> &'static str {
match self {
DeviceError::ConstructError => {
"Only a non-drop buffer can be converted to a CPU+OpenCL buffer"
},
DeviceError::CPUtoCUDA => {
"Only a CPU Buffer can be converted to a CUDA Buffer"
}
}
}
}
impl core::fmt::Debug for DeviceError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.as_str())?;
Ok(())
}
}
impl core::fmt::Display for DeviceError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.as_str())?;
Ok(())
}
}
impl std::error::Error for DeviceError {}
/// Return a device that implements the trait provided thus giving access to the functions implemented by the trait.
///
/// # Example
/// ```
/// use custos::{Error, CPU, get_device, VecRead, AsDev, Buffer};
///
/// fn main() -> Result<(), Error> {
/// let device = CPU::new();
/// let read = get_device!(device.dev(), VecRead<f32>);
///
/// let buf = Buffer::from(( &device, [1.51, 6.123, 7., 5.21, 8.62, 4.765]));
/// let read = read.read(&buf);
/// assert_eq!(read, vec![1.51, 6.123, 7., 5.21, 8.62, 4.765]);
/// Ok(())
/// }
/// ```
#[macro_export]
macro_rules! get_device {
($device:expr, $t:ident<$g:ident>) => {{
use $crate::{ DeviceType, CPU };
let device: &dyn $t<$g> = unsafe {
//&*($device.device as *mut CPU)
match $device.device_type {
DeviceType::CPU => &*($device.device as *mut CPU),
#[cfg(feature="cuda")]
DeviceType::CUDA => &*($device.device as *mut $crate::CudaDevice),
#[cfg(feature="opencl")]
DeviceType::CL => &*($device.device as *mut $crate::CLDevice),
// TODO: convert to error
_ => panic!(
"No device found to execute this operation with.
If you are using get_device! in your own crate,
you need to add 'opencl' and 'cuda' as features in your Cargo.toml."
),
}
};
device
}}
}