1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use crate::Matrix;
use custos::{impl_stack, number::Number, CDatatype, Device, MainMemory, Shape, CPU};
#[cfg(feature = "stack")]
use custos::Stack;
#[cfg(feature = "cpu")]
use custos::Cache;
#[cfg(feature = "opencl")]
use super::{cl_to_cpu_s, cl_to_cpu_scalar};
#[cfg(feature = "opencl")]
use custos::OpenCL;
#[cfg(feature = "cuda")]
use crate::{cu_to_cpu_s, cu_to_cpu_scalar};
#[cfg(feature = "cuda")]
use custos::CUDA;
impl<'a, T, IS: Shape, D: SumOps<T, IS>> Matrix<'a, T, D, IS> {
pub fn sum(&self) -> T {
self.device().sum(self)
}
pub fn mean(&self) -> T {
self.device().mean(self)
}
}
impl<'a, T, D: Device, IS: Shape> Matrix<'a, T, D, IS> {
pub fn sum_rows<OS: Shape>(&self) -> Matrix<'a, T, D, OS>
where
D: SumOverOps<T, IS, OS>,
{
self.device().sum_rows(self)
}
pub fn sum_cols<OS: Shape>(&self) -> Matrix<'a, T, D, OS>
where
D: SumOverOps<T, IS, OS>,
{
self.device().sum_cols(self)
}
}
pub trait SumOps<T, IS: Shape = (), D: Device = Self>: Device {
fn sum(&self, x: &Matrix<T, D, IS>) -> T;
fn mean(&self, x: &Matrix<T, D, IS>) -> T;
}
pub trait SumOverOps<T, IS: Shape = (), OS: Shape = (), D: Device = Self>: Device {
fn sum_rows(&self, x: &Matrix<T, D, IS>) -> Matrix<T, Self, OS>;
fn sum_cols(&self, x: &Matrix<T, D, IS>) -> Matrix<T, Self, OS>;
}
#[cfg(feature = "cpu")]
#[impl_stack]
impl<T: Number, D: MainMemory, IS: Shape> SumOps<T, IS, D> for CPU {
fn sum(&self, x: &Matrix<T, D, IS>) -> T {
x.iter().copied().sum()
}
fn mean(&self, x: &Matrix<T, D, IS>) -> T {
let sum = self.sum(x);
sum / T::from_usize(x.size())
}
}
#[cfg(feature = "cpu")]
impl<T: Copy + Default + core::ops::AddAssign, D: MainMemory, IS: Shape, OS: Shape>
SumOverOps<T, IS, OS, D> for CPU
{
fn sum_rows(&self, x: &Matrix<T, D, IS>) -> Matrix<T, Self, OS> {
let mut out = Cache::get(self, x.cols(), x.node.idx);
let data = x.as_slice();
let sum_slice = out.as_mut_slice();
for value in sum_slice.iter_mut() {
*value = T::default();
}
for idx in 0..x.rows() {
let index = idx * x.cols();
let row = &data[index..index + x.cols()];
for (i, value) in row.iter().enumerate() {
sum_slice[i] += *value;
}
}
(out, 1, x.cols()).into()
}
fn sum_cols(&self, x: &Matrix<T, D, IS>) -> Matrix<T, Self, OS> {
let mut out = Cache::get(self, x.rows(), x.node.idx);
let data = x.as_slice();
let sum_slice = out.as_mut_slice();
for (idx, col_vec_value) in sum_slice.iter_mut().enumerate().take(x.rows()) {
let index = idx * x.cols();
let row = &data[index..index + x.cols()];
let mut sum = T::default();
for data in row {
sum += *data;
}
*col_vec_value = sum;
}
(out, x.rows(), 1).into()
}
}
#[cfg(feature = "opencl")]
impl<T: Number> SumOps<T> for OpenCL {
#[inline]
fn sum(&self, x: &Matrix<T, Self>) -> T {
cl_to_cpu_scalar(self, x, |device, x| device.sum(x))
}
#[inline]
fn mean(&self, x: &Matrix<T, Self>) -> T {
cl_to_cpu_scalar(self, x, |device, x| device.mean(x))
}
}
#[cfg(feature = "opencl")]
impl<T: CDatatype> SumOverOps<T> for OpenCL {
#[inline]
fn sum_rows<'a>(&'a self, x: &Matrix<T, Self>) -> Matrix<'a, T, Self> {
cl_to_cpu_s(self, x, |device, x| device.sum_rows(x))
}
#[inline]
fn sum_cols(&self, x: &Matrix<T, Self>) -> Matrix<T, Self> {
cl_to_cpu_s(self, x, |device, x| device.sum_cols(x))
}
}
#[cfg(feature = "cuda")]
impl<T: CDatatype> SumOps<T> for CUDA {
#[inline]
fn sum(&self, x: &Matrix<T, CUDA>) -> T {
cu_to_cpu_scalar(x, |device, x| device.sum(&x))
}
#[inline]
fn mean(&self, x: &Matrix<T, CUDA>) -> T {
cu_to_cpu_scalar(x, |device, x| device.mean(&x))
}
}
#[cfg(feature="cuda")]
impl<T: CDatatype> SumOverOps<T> for CUDA {
#[inline]
fn sum_rows(&self, x: &Matrix<T, CUDA>) -> Matrix<T, CUDA> {
cu_to_cpu_s(self, x, |device, x| device.sum_rows(&x))
}
#[inline]
fn sum_cols(&self, x: &Matrix<T, CUDA>) -> Matrix<T, CUDA> {
cu_to_cpu_s(self, x, |device, x| device.sum_cols(&x))
}
}