1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#[cfg(feature = "opencl")]
use crate::opencl::cl_str_op_mat;
use crate::{each_op, Matrix};
#[cfg(feature = "opencl")]
use custos::CLDevice;
use custos::{devices::cpu::CPU, get_device, number::Float, CDatatype};
#[cfg(feature = "cuda")]
use crate::cu_str_op;
#[cfg(feature = "cuda")]
use custos::CudaDevice;
impl<'a, T: CDatatype + Float> Matrix<'a, T> {
#[inline]
pub fn tanh(&self) -> Matrix<'a, T> {
let device = get_device!(self.device(), ActivationOps<T>);
device.tanh(self)
}
#[inline]
pub fn tanh_grad(&self) -> Matrix<'a, T> {
let device = get_device!(self.device(), ActivationOps<T>);
device.tanh_grad(self)
}
#[inline]
pub fn relu(&self) -> Matrix<'a, T> {
let device = get_device!(self.device(), ActivationOps<T>);
device.relu(self)
}
#[inline]
pub fn relu_grad(&self) -> Matrix<'a, T> {
let device = get_device!(self.device(), ActivationOps<T>);
device.relu_grad(self)
}
}
pub trait ActivationOps<T> {
fn sigmoid(&self, x: &Matrix<T>) -> Matrix<T>;
fn tanh(&self, x: &Matrix<T>) -> Matrix<T>;
fn tanh_grad(&self, x: &Matrix<T>) -> Matrix<T>;
fn relu(&self, x: &Matrix<T>) -> Matrix<T>;
fn relu_grad(&self, x: &Matrix<T>) -> Matrix<T>;
}
#[cfg(feature = "opencl")]
impl<T: CDatatype + Float> ActivationOps<T> for CLDevice {
#[inline]
fn sigmoid(&self, x: &Matrix<T>) -> Matrix<T> {
cl_str_op_mat(self, x, "1.0 / (1.0 + exp(-x))").unwrap()
}
#[inline]
fn tanh(&self, x: &Matrix<T>) -> Matrix<T> {
cl_str_op_mat(self, x, "tanh(x)").unwrap()
}
#[inline]
fn tanh_grad(&self, x: &Matrix<T>) -> Matrix<T> {
cl_str_op_mat(self, x, "1.0 - pow(tanh(x), 2)").unwrap()
}
#[inline]
fn relu(&self, x: &Matrix<T>) -> Matrix<T> {
cl_str_op_mat(self, x, "x * (x >= 0)").unwrap()
}
#[inline]
fn relu_grad(&self, x: &Matrix<T>) -> Matrix<T> {
cl_str_op_mat(self, x, "(x >= 0)").unwrap()
}
}
impl<T: Float> ActivationOps<T> for CPU {
#[inline]
fn sigmoid(&self, x: &Matrix<T>) -> Matrix<T> {
each_op(self, x, |x| T::one() / (T::one() + x.negate().exp()))
}
#[inline]
fn tanh(&self, x: &Matrix<T>) -> Matrix<T> {
each_op(self, x, |x| x.tanh())
}
#[inline]
fn tanh_grad(&self, x: &Matrix<T>) -> Matrix<T> {
each_op(self, x, |x| T::one() - x.tanh().powi(2))
}
#[inline]
fn relu(&self, x: &Matrix<T>) -> Matrix<T> {
each_op(self, x, |x| T::from_usize((x >= T::zero()) as usize) * x)
}
#[inline]
fn relu_grad(&self, x: &Matrix<T>) -> Matrix<T> {
each_op(self, x, |x| T::from_usize((x >= T::default()) as usize))
}
}
#[cfg(feature = "cuda")]
impl<T: CDatatype> ActivationOps<T> for CudaDevice {
#[inline]
fn sigmoid(&self, x: &Matrix<T>) -> Matrix<T> {
let out = cu_str_op(self, x, "1.0 / (1.0 + exp(-x))").unwrap();
(out, x.dims()).into()
}
#[inline]
fn tanh(&self, x: &Matrix<T>) -> Matrix<T> {
let out = cu_str_op(self, x, "tanh(x)").unwrap();
(out, x.dims()).into()
}
#[inline]
fn tanh_grad(&self, x: &Matrix<T>) -> Matrix<T> {
let out = cu_str_op(self, x, "1.0 - pow(tanh(x), 2)").unwrap();
(out, x.dims()).into()
}
#[inline]
fn relu(&self, x: &Matrix<T>) -> Matrix<T> {
let out = cu_str_op(self, x, "x * (x >= 0)").unwrap();
(out, x.dims()).into()
}
#[inline]
fn relu_grad(&self, x: &Matrix<T>) -> Matrix<T> {
let out = cu_str_op(self, x, "(x >= 0)").unwrap();
(out, x.dims()).into()
}
}