1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
use crate::diagn::{Span, RcReport};
use crate::expr::{Expression, ExpressionValue, ExpressionEvalContext};
use crate::asm::{AssemblerParser, LabelManager, LabelContext};
use crate::asm::BankDef;
use crate::asm::Bank;
use crate::asm::BinaryBlock;
use crate::asm::cpudef::CpuDef;
use crate::asm::cpudef::RuleParameterType;
use crate::util::FileServer;
use num_bigint::ToBigInt;


pub struct AssemblerState
{
	pub cpudef: Option<CpuDef>,
	pub labels: LabelManager,
	pub parsed_instrs: Vec<ParsedInstruction>,
	pub parsed_exprs: Vec<ParsedExpression>,
	
	pub bankdefs: Vec<BankDef>,
	pub blocks: Vec<Bank>,
	pub cur_bank: usize,
	pub cur_block: usize
}


pub struct ExpressionContext
{
	pub block: usize,
	pub offset: usize,
	pub label_ctx: LabelContext
}


pub struct ParsedInstruction
{
	pub rule_index: usize,
	pub ctx: ExpressionContext,
	pub span: Span,
	pub exprs: Vec<Expression>,
	pub args: Vec<Option<ExpressionValue>>
}


pub struct ParsedExpression
{
	pub ctx: ExpressionContext,
	pub width: usize,
	pub expr: Expression
}


#[derive(Debug, Clone, PartialEq)]
pub struct BitRangeSpan
{
	pub start: usize,
	pub end: usize,
	pub addr: usize,
	pub span: Span
}


impl AssemblerState
{
	pub fn new() -> AssemblerState
	{
		let mut state = AssemblerState
		{
			cpudef: None,
			labels: LabelManager::new(),
			parsed_instrs: Vec::new(),
			parsed_exprs: Vec::new(),
			
			bankdefs: Vec::new(),
			blocks: Vec::new(),
			cur_bank: 0,
			cur_block: 0
		};
		
		state.bankdefs.push(BankDef::new("", 0, 0, Some(0), false, None));
		state.blocks.push(Bank::new(""));
		state
	}
	
	
	pub fn process_file<S>(&mut self, report: RcReport, fileserver: &dyn FileServer, filename: S) -> Result<(), ()>
	where S: Into<String>
	{
		AssemblerParser::parse_file(report.clone(), self, fileserver, filename, None)?;
		
		match report.has_errors()
		{
			true => Err(()),
			false => Ok(())
		}
	}
	
	
	pub fn wrapup(&mut self, report: RcReport) -> Result<(), ()>
	{
		self.resolve_instrs(report.clone())?;
		self.resolve_exprs(report.clone())?;
		self.check_bank_overlap(report.clone());
		
		//for block in &self.blocks
		//	{ println!("{:#?}", block.bits.spans); }
		
		match report.has_errors()
		{
			true => Err(()),
			false => Ok(())
		}
	}
	
	
	pub fn get_binary_output(&self) -> BinaryBlock
	{
		let mut output = BinaryBlock::new();
		
		for block in &self.blocks
		{
			let bankdef_index = self.find_bankdef(&block.bank_name).unwrap();
			let bankdef = &self.bankdefs[bankdef_index];
			
			let bits = if bankdef_index == 0
				{ 1 }
			else
				{ self.cpudef.as_ref().unwrap().bits };
			
			if let Some(output_index) = bankdef.outp
			{
				let mut sorted_spans = block.bits.spans.clone();
				sorted_spans.sort_by(|a, b| a.start.cmp(&b.start));
				
				let mut sorted_span_index = 0;
				
				for i in 0..block.bits.len()
				{ 
					let bitrange_index = sorted_spans[sorted_span_index..].iter().position(|s| i >= s.start && i < s.end);
					let bitrange = bitrange_index.map(|i| &sorted_spans[sorted_span_index + i]);
					
					if let Some(bitrange_index) = bitrange_index
						{ sorted_span_index += bitrange_index; }
					
					if let Some(bitrange) = bitrange
						{ output.write(output_index * bits + i, block.bits.read(i), Some((bitrange.addr, &bitrange.span))); }
					else
						{ output.write(output_index * bits + i, block.bits.read(i), None); }
				}
				
				for bitrange in block.bits.spans.iter().filter(|s| s.start == s.end)
					{ output.mark_label(output_index * bits + bitrange.start, bitrange.addr, &bitrange.span); }
				
				if bankdef.fill
				{
					for i in block.bits.len()..(bankdef.size * bits)
						{ output.write(output_index * bits + i, false, None); }
				}
			}
		}
		
		output
	}


	pub fn get_symbol_output(&self) -> String
	{
		let mut result = String::new();

		for global_label in &self.labels.name_to_index_map
		{
			let global_value = &self.labels.global_labels[*global_label.1];

			if global_label.0 != ""
			{
				match global_value.value
				{
					ExpressionValue::Integer(ref integer) =>
					{
						result.push_str(&format!("{} = {:#x}\n", global_label.0, integer));
					}
					_ => {}
				}
			}

			for local_label in &global_value.local_labels
			{
				match local_label.1
				{
					ExpressionValue::Integer(ref integer) =>
					{
						result.push_str(&format!("{}{} = {:#x}\n", global_label.0, local_label.0, integer));
					}
					_ => {}
				}
			}
		}

		result
	}
}


impl AssemblerState
{
	pub fn check_cpudef_active(&self, report: RcReport, span: &Span) -> Result<(), ()>
	{
		if self.cpudef.is_none()
			{ Err(report.error_span("no cpu defined", span)) }
		else
			{ Ok(()) }
	}
	

	pub fn get_cur_context(&self) -> ExpressionContext
	{
		let block = &self.blocks[self.cur_block];
		
		ExpressionContext
		{
			block: self.cur_block,
			offset: block.bits.len(),
			label_ctx: self.labels.get_cur_context()
		}
	}
	
	
	pub fn find_bankdef(&self, name: &str) -> Option<usize>
	{
		for i in 0..self.bankdefs.len()
		{
			if self.bankdefs[i].name == name
				{ return Some(i); }
		}
		
		None
	}
	
	
	pub fn check_bank_overlap(&self, report: RcReport)
	{
		for j in 1..self.bankdefs.len()
		{
			if self.bankdefs[j].outp.is_none()
				{ continue; }
		
			for i in 1..j
			{
				let bank1 = &self.bankdefs[i];
				let bank2 = &self.bankdefs[j];
				
				let outp1 = bank1.outp.unwrap();
				let outp2 = bank2.outp.unwrap();
				
				if outp1 + bank1.size > outp2 && outp1 < outp2 + bank2.size
					{ report.error_span(format!("banks `{}` and `{}` overlap in output location", bank1.name, bank2.name), &bank1.decl_span.as_ref().unwrap()); }
			}
		}
	}
	
	
	pub fn get_cur_address(&self, report: RcReport, span: &Span) -> Result<usize, ()>
	{
		self.check_cpudef_active(report.clone(), span)?;
		
		let bits = self.cpudef.as_ref().unwrap().bits;
		let block = &self.blocks[self.cur_block];
		
		let excess_bits = block.bits.len() % bits;
		if excess_bits != 0
		{
			let bits_short = bits - excess_bits;
			let plural = if bits_short > 1 { "bits" } else { "bit" };
			return Err(report.error_span(format!("address is not aligned to a word boundary ({} {} short)", bits_short, plural), span));
		}
			
		let bankdef_index = self.find_bankdef(&block.bank_name).unwrap();
		let bankdef = &self.bankdefs[bankdef_index];
		
		let block_offset = block.bits.len() / bits;
		let addr = match block_offset.checked_add(bankdef.addr)
		{
			Some(addr) => addr,
			None => return Err(report.error_span("address overflowed valid range", span))
		};
		
		if bankdef_index != 0 && addr >= bankdef.addr + bankdef.size
			{ return Err(report.error_span("address is out of bank range", span)); }
			
		Ok(addr)
	}
	
	
	fn get_bitrange_address(&self, report: RcReport, span: &Span) -> Result<usize, ()>
	{
		if self.cpudef.is_none()
			{ return Ok(0); }
		
		let bits = self.cpudef.as_ref().unwrap().bits;
		let block = &self.blocks[self.cur_block];
		
		let bankdef_index = self.find_bankdef(&block.bank_name).unwrap();
		let bankdef = &self.bankdefs[bankdef_index];
		
		let block_offset = block.bits.len() / bits;
		let addr = match block_offset.checked_add(bankdef.addr)
		{
			Some(addr) => addr,
			None => return Err(report.error_span("address overflowed valid range", span))
		};
		
		Ok(addr)
	}
	
	
	pub fn check_valid_address(&self, report: RcReport, block_index: usize, addr: usize, span: &Span) -> Result<(), ()>
	{
		let block = &self.blocks[block_index];
		let bankdef_index = self.find_bankdef(&block.bank_name).unwrap();
		let bankdef = &self.bankdefs[bankdef_index];
		
		if bankdef_index == 0
			{ return Ok(()); }
		
		if addr < bankdef.addr || addr > bankdef.addr + bankdef.size
			{ return Err(report.error_span("address is out of bank range", span)); }
			
		Ok(())
	}
	
	
	pub fn output_bits_until_aligned(&mut self, report: RcReport, multiple_of: usize, report_span: &Span, output_span: Option<&Span>) -> Result<(), ()>
	{
		if multiple_of == 0
			{ return Err(report.error_span("invalid alignment", report_span)); }
		
		self.check_cpudef_active(report.clone(), report_span)?;
		
		let bits = self.cpudef.as_ref().unwrap().bits;
		
		while self.blocks[self.cur_block].bits.len() % (bits * multiple_of) != 0
			{ self.output_bit(report.clone(), false, true, report_span, output_span)?; }
			
		Ok(())
	}
	
	
	pub fn output_bit(&mut self, report: RcReport, bit: bool, skipping: bool, report_span: &Span, output_span: Option<&Span>) -> Result<(), ()>
	{
		{
			let block = &self.blocks[self.cur_block];
			let bankdef = &self.bankdefs[self.cur_bank];
			
			if bankdef.outp.is_none() && !skipping
				{ return Err(report.error_span("attempt to place data in non-writable bank", report_span)); }
			
			if self.cur_bank != 0
			{
				self.check_cpudef_active(report.clone(), report_span)?;
				
				if block.bits.len() / self.cpudef.as_ref().unwrap().bits >= bankdef.size
					{ return Err(report.error_span("data overflowed bank size", report_span)); }
			}
		}
		
		let bitrange = match output_span
		{
			Some(output_span) =>
			{
				let addr = self.get_bitrange_address(report, output_span)?;
				Some((addr, output_span))
			}
			None => None
		};
		
		self.blocks[self.cur_block].bits.append(bit, bitrange);
		Ok(())
	}
	
	
	pub fn output_zero_bits(&mut self, report: RcReport, num: usize, skipping: bool, report_span: &Span, output_span: Option<&Span>) -> Result<(), ()>
	{
		for _ in 0..num
			{ self.output_bit(report.clone(), false, skipping, report_span, output_span)?; }
			
		Ok(())
	}
	
	
	pub fn mark_label(&mut self, addr: usize, output_span: &Span)
	{
		let index = self.blocks[self.cur_block].bits.len();
		self.blocks[self.cur_block].bits.mark_label(index, addr, output_span);
	}

	
	pub fn resolve_instrs(&mut self, report: RcReport) -> Result<(), ()>
	{
		use std::mem;
		
		let mut instrs = mem::replace(&mut self.parsed_instrs, Vec::new());
		
		for mut instr in &mut instrs
		{
			// Errors go to the report.
			let _ = self.output_parsed_instr(report.clone(), &mut instr);
		}
		
		mem::replace(&mut self.parsed_instrs, instrs);
		
		Ok(())
	}
	

	pub fn resolve_exprs(&mut self, report: RcReport) -> Result<(), ()>
	{
		use std::mem;
		
		let exprs = mem::replace(&mut self.parsed_exprs, Vec::new());
		
		for expr in &exprs
		{
			// Errors go to the report.
			let _ = self.output_parsed_expr(report.clone(), expr);
		}
		
		mem::replace(&mut self.parsed_exprs, exprs);
		
		Ok(())
	}


	pub fn check_expr_constraint(&self, report: RcReport, value: &ExpressionValue, typ: &RuleParameterType, span: &Span) -> Result<(), ()>
	{
		use crate::expr::bigint_bits;

		if let RuleParameterType::Unsigned(width) = typ
		{
			if let ExpressionValue::Integer(value_int) = value
			{
				if value_int.sign() == num_bigint::Sign::Minus ||
					bigint_bits(&value_int) > *width
					{ return Err(report.error_span(&format!("argument out of range for type `u{}`", width), &span)); }
			}
			else
				{ return Err(report.error_span(&format!("wrong argument for type `u{}`", width), &span)); }
		}
		else if let RuleParameterType::Signed(width) = typ
		{
			if let ExpressionValue::Integer(value_int) = value
			{
				if (value_int.sign() == num_bigint::Sign::NoSign && *width == 0) ||
					(value_int.sign() == num_bigint::Sign::Plus && bigint_bits(&value_int) >= *width) ||
					(value_int.sign() == num_bigint::Sign::Minus && bigint_bits(&value_int) > *width)
					{ return Err(report.error_span(&format!("argument out of range for type `s{}`", width), &span)); }
			}
			else
				{ return Err(report.error_span(&format!("wrong argument for type `s{}`", width), &span)); }
		}
		else if let RuleParameterType::Integer(width) = typ
		{
			if let ExpressionValue::Integer(value_int) = value
			{
				if bigint_bits(&value_int) > *width
					{ return Err(report.error_span(&format!("argument out of range for type `i{}`", width), &span)); }
			}
			else
				{ return Err(report.error_span(&format!("wrong argument for type `i{}`", width), &span)); }
		}

		Ok(())
	}
	
	
	pub fn output_parsed_instr(&mut self, report: RcReport, instr: &mut ParsedInstruction) -> Result<(), ()>
	{
		// Resolve remaining arguments.
		for i in 0..instr.exprs.len()
		{
			if instr.args[i].is_none()
				{ instr.args[i] = Some(self.expr_eval(report.clone(), &instr.ctx, &instr.exprs[i], &mut ExpressionEvalContext::new())?); }
		}
		
		// Check rule constraints.
		let rule = &self.cpudef.as_ref().unwrap().rules[instr.rule_index];
		let mut args_eval_ctx = ExpressionEvalContext::new();
		for i in 0..instr.args.len()
		{
			let arg = instr.args[i].clone().unwrap();
			self.check_expr_constraint(report.clone(), &arg, &rule.params[i].typ, &instr.exprs[i].span())?;
			args_eval_ctx.set_local(rule.params[i].name.clone(), arg);
		}
		
		// Output binary representation.
		let (left, right) = rule.production.slice().unwrap();
		
		let _guard = report.push_parent("failed to resolve instruction", &instr.span);
		
		let value = self.expr_eval(report.clone(), &instr.ctx, &rule.production, &mut args_eval_ctx)?;
		
		let addr = self.get_bitrange_address(report, &instr.span)?;
		
		let block = &mut self.blocks[instr.ctx.block];
		
		for i in 0..(left - right + 1)
		{
			let bit = value.get_bit(left - right - i);
			block.bits.write(instr.ctx.offset + i, bit, Some((addr, &instr.span)));
		}
		
		Ok(())
	}
	
	
	pub fn output_parsed_expr(&mut self, report: RcReport, expr: &ParsedExpression) -> Result<(), ()>
	{
		// Resolve expression.
		let value = self.expr_eval(report.clone(), &expr.ctx, &expr.expr, &mut ExpressionEvalContext::new())?;
		
		// Check size constraints.
		let value_width = value.bits();
		
		if value_width > expr.width
		{
			let descr = format!("value (width = {}) is larger than the specified width; use a bit slice", value_width);
			return Err(report.error_span(descr, &expr.expr.span()));
		}
		
		// Output binary representation.
		let block = &mut self.blocks[expr.ctx.block];
		
		for i in 0..expr.width
		{
			let bit = value.get_bit(expr.width - i - 1);
			block.bits.write(expr.ctx.offset + i, bit, None);
		}
		
		Ok(())
	}
	
	
	pub fn expr_eval(&self, report: RcReport, ctx: &ExpressionContext, expr: &Expression, eval_ctx: &mut ExpressionEvalContext) -> Result<ExpressionValue, ()>
	{
		expr.eval(report.clone(), eval_ctx,
			&|report, name, span| self.expr_eval_var(report, ctx, name, span),
			&|report, fn_id, args, span| self.expr_eval_fn(report, fn_id, args, span))
	}
		
		
	fn expr_eval_var(&self, report: RcReport, ctx: &ExpressionContext, name: &str, span: &Span) -> Result<ExpressionValue, bool>
	{
		if name == "pc"
			{ Ok(ExpressionValue::Integer(ctx.get_address_at(report, self, span)?.to_bigint().unwrap())) }
			
		else if name == "assert"
			{ Ok(ExpressionValue::Function(0)) }
		
		else if let Some('.') = name.chars().next()
		{
			if self.labels.local_exists(ctx.label_ctx, name)
				{ Ok(self.labels.get_local(ctx.label_ctx, name).unwrap().clone()) }
			else
				{ Err(false) }
		}
		
		else
		{
			if self.labels.global_exists(name)
				{ Ok(self.labels.get_global(name).unwrap().clone()) }
			else
				{ Err(false) }
		}
	}
	
	
	fn expr_eval_fn(&self, report: RcReport, fn_id: usize, args: Vec<ExpressionValue>, span: &Span) -> Result<ExpressionValue, bool>
	{
		match fn_id
		{
			0 =>
			{
				if args.len() != 1
					{ return Err({ report.error_span("wrong number of arguments", span); true }); }
					
				match args[0]
				{
					ExpressionValue::Bool(value) =>
					{
						match value
						{
							true => Ok(ExpressionValue::Void),
							false => Err({ report.error_span("assertion failed", span); true })
						}
					}
					
					_ => Err({ report.error_span("wrong argument type", span); true })
				}
			}
			
			_ => unreachable!()
		}
	}
}


impl ExpressionContext
{
	pub fn get_address_at(&self, report: RcReport, state: &AssemblerState, span: &Span) -> Result<usize, bool>
	{
		if let Err(_) = state.check_cpudef_active(report.clone(), span)
			{ return Err(true); }
	
		let bits = state.cpudef.as_ref().unwrap().bits;
		let block = &state.blocks[self.block];
		
		if block.bits.len() % bits != 0
			{ return Err({ report.error_span("address is not aligned to a byte", span); true }); }
			
		let bankdef = state.find_bankdef(&block.bank_name).unwrap();
		
		let block_offset = self.offset / bits;
		match block_offset.checked_add(state.bankdefs[bankdef].addr)
		{
			Some(addr) => Ok(addr),
			None => Err({ report.error_span("address overflowed valid range", span); true })
		}
	}
}