cuda_rust_wasm/transpiler/
kernel_translator.rs

1//! CUDA kernel pattern translation
2
3use crate::{Result, translation_error};
4use crate::parser::ast::*;
5use quote::{quote, format_ident};
6use proc_macro2::TokenStream;
7
8/// Translator for common CUDA kernel patterns
9pub struct KernelTranslator {
10    /// Thread block dimensions for optimization
11    block_dims: Option<(u32, u32, u32)>,
12    /// Grid dimensions for optimization
13    grid_dims: Option<(u32, u32, u32)>,
14}
15
16impl KernelTranslator {
17    /// Create a new kernel translator
18    pub fn new() -> Self {
19        Self {
20            block_dims: None,
21            grid_dims: None,
22        }
23    }
24    
25    /// Set block dimensions for optimization
26    pub fn with_block_dims(mut self, x: u32, y: u32, z: u32) -> Self {
27        self.block_dims = Some((x, y, z));
28        self
29    }
30    
31    /// Set grid dimensions for optimization
32    pub fn with_grid_dims(mut self, x: u32, y: u32, z: u32) -> Self {
33        self.grid_dims = Some((x, y, z));
34        self
35    }
36    
37    /// Translate a vector addition kernel pattern
38    pub fn translate_vector_add(&self, kernel: &KernelDef) -> Result<TokenStream> {
39        // Verify kernel signature matches vector addition pattern
40        if kernel.params.len() != 3 {
41            return Err(translation_error!("Vector addition requires 3 parameters"));
42        }
43        
44        let kernel_name = format_ident!("{}", kernel.name);
45        
46        Ok(quote! {
47            #[kernel]
48            pub fn #kernel_name(
49                a: &[f32],
50                b: &[f32],
51                c: &mut [f32],
52            ) {
53                let idx = thread::index().x + block::index().x * block::dim().x;
54                if idx < c.len() as u32 {
55                    c[idx as usize] = a[idx as usize] + b[idx as usize];
56                }
57            }
58        })
59    }
60    
61    /// Translate a matrix multiplication kernel pattern
62    pub fn translate_matrix_mul(&self, kernel: &KernelDef) -> Result<TokenStream> {
63        // Verify kernel signature matches matrix multiplication pattern
64        if kernel.params.len() < 5 {
65            return Err(translation_error!("Matrix multiplication requires at least 5 parameters"));
66        }
67        
68        let kernel_name = format_ident!("{}", kernel.name);
69        
70        Ok(quote! {
71            #[kernel]
72            pub fn #kernel_name(
73                a: &[f32],
74                b: &[f32],
75                c: &mut [f32],
76                m: u32,
77                n: u32,
78                k: u32,
79            ) {
80                let row = thread::index().y + block::index().y * block::dim().y;
81                let col = thread::index().x + block::index().x * block::dim().x;
82                
83                if row < m && col < n {
84                    let mut sum = 0.0f32;
85                    for i in 0..k {
86                        sum += a[(row * k + i) as usize] * b[(i * n + col) as usize];
87                    }
88                    c[(row * n + col) as usize] = sum;
89                }
90            }
91        })
92    }
93    
94    /// Translate a reduction kernel pattern
95    pub fn translate_reduction(&self, kernel: &KernelDef) -> Result<TokenStream> {
96        let kernel_name = format_ident!("{}", kernel.name);
97        
98        Ok(quote! {
99            #[kernel]
100            pub fn #kernel_name(
101                input: &[f32],
102                output: &mut [f32],
103                n: u32,
104            ) {
105                // Shared memory for partial sums
106                #[shared]
107                static mut PARTIAL_SUMS: [f32; 256] = [0.0; 256];
108                
109                let tid = thread::index().x;
110                let gid = block::index().x * block::dim().x + tid;
111                let block_size = block::dim().x;
112                
113                // Load data and perform first reduction
114                let mut sum = 0.0f32;
115                let mut i = gid;
116                while i < n {
117                    sum += input[i as usize];
118                    i += grid::dim().x * block_size;
119                }
120                
121                // Store to shared memory
122                unsafe {
123                    PARTIAL_SUMS[tid as usize] = sum;
124                }
125                
126                // Synchronize threads
127                cuda_rust_wasm::runtime::sync_threads();
128                
129                // Perform reduction in shared memory
130                let mut stride = block_size / 2;
131                while stride > 0 {
132                    if tid < stride {
133                        unsafe {
134                            PARTIAL_SUMS[tid as usize] += PARTIAL_SUMS[(tid + stride) as usize];
135                        }
136                    }
137                    cuda_rust_wasm::runtime::sync_threads();
138                    stride /= 2;
139                }
140                
141                // Write result
142                if tid == 0 {
143                    output[block::index().x as usize] = unsafe { PARTIAL_SUMS[0] };
144                }
145            }
146        })
147    }
148    
149    /// Translate a stencil computation kernel pattern
150    pub fn translate_stencil(&self, kernel: &KernelDef) -> Result<TokenStream> {
151        let kernel_name = format_ident!("{}", kernel.name);
152        
153        Ok(quote! {
154            #[kernel]
155            pub fn #kernel_name(
156                input: &[f32],
157                output: &mut [f32],
158                width: u32,
159                height: u32,
160            ) {
161                let x = thread::index().x + block::index().x * block::dim().x;
162                let y = thread::index().y + block::index().y * block::dim().y;
163                
164                if x > 0 && x < width - 1 && y > 0 && y < height - 1 {
165                    let idx = (y * width + x) as usize;
166                    let idx_n = ((y - 1) * width + x) as usize;
167                    let idx_s = ((y + 1) * width + x) as usize;
168                    let idx_e = (y * width + (x + 1)) as usize;
169                    let idx_w = (y * width + (x - 1)) as usize;
170                    
171                    // 5-point stencil
172                    output[idx] = 0.2 * (
173                        input[idx] +
174                        input[idx_n] +
175                        input[idx_s] +
176                        input[idx_e] +
177                        input[idx_w]
178                    );
179                }
180            }
181        })
182    }
183    
184    /// Detect kernel pattern from AST
185    pub fn detect_pattern(&self, kernel: &KernelDef) -> KernelPattern {
186        // Analyze kernel body to detect pattern
187        if self.is_vector_pattern(kernel) {
188            KernelPattern::VectorAdd
189        } else if self.is_matrix_pattern(kernel) {
190            KernelPattern::MatrixMul
191        } else if self.is_reduction_pattern(kernel) {
192            KernelPattern::Reduction
193        } else if self.is_stencil_pattern(kernel) {
194            KernelPattern::Stencil
195        } else {
196            KernelPattern::Generic
197        }
198    }
199    
200    /// Check if kernel matches vector operation pattern
201    fn is_vector_pattern(&self, kernel: &KernelDef) -> bool {
202        // Look for simple element-wise operations
203        kernel.params.len() >= 3 && 
204        self.has_linear_indexing(&kernel.body)
205    }
206    
207    /// Check if kernel matches matrix operation pattern
208    fn is_matrix_pattern(&self, kernel: &KernelDef) -> bool {
209        // Look for 2D indexing patterns
210        kernel.params.len() >= 5 &&
211        self.has_2d_indexing(&kernel.body)
212    }
213    
214    /// Check if kernel matches reduction pattern
215    fn is_reduction_pattern(&self, kernel: &KernelDef) -> bool {
216        // Look for shared memory usage and tree reduction
217        self.has_shared_memory(&kernel.body) &&
218        self.has_sync_threads(&kernel.body)
219    }
220    
221    /// Check if kernel matches stencil pattern
222    fn is_stencil_pattern(&self, kernel: &KernelDef) -> bool {
223        // Look for neighbor access patterns
224        self.has_neighbor_access(&kernel.body)
225    }
226    
227    /// Check for linear indexing pattern
228    fn has_linear_indexing(&self, block: &Block) -> bool {
229        // Simplified check - look for threadIdx.x + blockIdx.x * blockDim.x
230        block.statements.iter().any(|stmt| {
231            match stmt {
232                Statement::VarDecl { init: Some(expr), .. } => {
233                    self.is_linear_index_expr(expr)
234                },
235                Statement::Expr(expr) => self.contains_linear_index(expr),
236                _ => false,
237            }
238        })
239    }
240    
241    /// Check for 2D indexing pattern
242    fn has_2d_indexing(&self, block: &Block) -> bool {
243        // Look for both x and y dimension usage
244        let has_x = block.statements.iter().any(|stmt| self.uses_dimension(stmt, &Dimension::X));
245        let has_y = block.statements.iter().any(|stmt| self.uses_dimension(stmt, &Dimension::Y));
246        has_x && has_y
247    }
248    
249    /// Check for shared memory usage
250    fn has_shared_memory(&self, block: &Block) -> bool {
251        block.statements.iter().any(|stmt| {
252            match stmt {
253                Statement::VarDecl { storage, .. } => matches!(storage, StorageClass::Shared),
254                _ => false,
255            }
256        })
257    }
258    
259    /// Check for sync_threads calls
260    fn has_sync_threads(&self, block: &Block) -> bool {
261        block.statements.iter().any(|stmt| {
262            matches!(stmt, Statement::SyncThreads)
263        })
264    }
265    
266    /// Check for neighbor access patterns
267    fn has_neighbor_access(&self, block: &Block) -> bool {
268        // Look for array accesses with +1/-1 offsets
269        block.statements.iter().any(|stmt| {
270            self.has_offset_access(stmt)
271        })
272    }
273    
274    /// Helper: Check if expression is linear index
275    fn is_linear_index_expr(&self, expr: &Expression) -> bool {
276        match expr {
277            Expression::Binary { op: BinaryOp::Add, left, right } => {
278                // Check for threadIdx.x + blockIdx.x * blockDim.x pattern
279                matches!(left.as_ref(), Expression::ThreadIdx(Dimension::X)) ||
280                self.is_block_offset(right)
281            },
282            _ => false,
283        }
284    }
285    
286    /// Helper: Check if expression contains linear indexing
287    fn contains_linear_index(&self, expr: &Expression) -> bool {
288        match expr {
289            Expression::Binary { left, right, .. } => {
290                self.contains_linear_index(left) || self.contains_linear_index(right)
291            },
292            Expression::Index { index, .. } => self.is_linear_index_expr(index),
293            _ => false,
294        }
295    }
296    
297    /// Helper: Check if expression is block offset
298    fn is_block_offset(&self, expr: &Expression) -> bool {
299        match expr {
300            Expression::Binary { op: BinaryOp::Mul, left, right } => {
301                matches!(left.as_ref(), Expression::BlockIdx(Dimension::X)) &&
302                matches!(right.as_ref(), Expression::BlockDim(Dimension::X))
303            },
304            _ => false,
305        }
306    }
307    
308    /// Helper: Check if statement uses dimension
309    fn uses_dimension(&self, stmt: &Statement, dim: &Dimension) -> bool {
310        match stmt {
311            Statement::VarDecl { init: Some(expr), .. } => self.expr_uses_dimension(expr, dim),
312            Statement::Expr(expr) => self.expr_uses_dimension(expr, dim),
313            _ => false,
314        }
315    }
316    
317    /// Helper: Check if expression uses dimension
318    fn expr_uses_dimension(&self, expr: &Expression, dim: &Dimension) -> bool {
319        match expr {
320            Expression::ThreadIdx(d) | Expression::BlockIdx(d) | 
321            Expression::BlockDim(d) | Expression::GridDim(d) => d == dim,
322            Expression::Binary { left, right, .. } => {
323                self.expr_uses_dimension(left, dim) || self.expr_uses_dimension(right, dim)
324            },
325            _ => false,
326        }
327    }
328    
329    /// Helper: Check for offset array access
330    fn has_offset_access(&self, stmt: &Statement) -> bool {
331        match stmt {
332            Statement::Expr(expr) => self.expr_has_offset_access(expr),
333            Statement::VarDecl { init: Some(expr), .. } => self.expr_has_offset_access(expr),
334            _ => false,
335        }
336    }
337    
338    /// Helper: Check expression for offset access
339    fn expr_has_offset_access(&self, expr: &Expression) -> bool {
340        match expr {
341            Expression::Index { index, .. } => {
342                // Check if index contains +1 or -1
343                self.has_unit_offset(index)
344            },
345            Expression::Binary { left, right, .. } => {
346                self.expr_has_offset_access(left) || self.expr_has_offset_access(right)
347            },
348            _ => false,
349        }
350    }
351    
352    /// Helper: Check for unit offset in expression
353    fn has_unit_offset(&self, expr: &Expression) -> bool {
354        match expr {
355            Expression::Binary { op: BinaryOp::Add | BinaryOp::Sub, left: _, right } => {
356                matches!(right.as_ref(), Expression::Literal(Literal::Int(1)))
357            },
358            _ => false,
359        }
360    }
361}
362
363/// Common CUDA kernel patterns
364#[derive(Debug, Clone, PartialEq)]
365pub enum KernelPattern {
366    VectorAdd,
367    MatrixMul,
368    Reduction,
369    Stencil,
370    Generic,
371}
372
373impl Default for KernelTranslator {
374    fn default() -> Self {
375        Self::new()
376    }
377}