cuda_rust_wasm/neural_integration/
gpu_neural_ops.rs

1//! GPU Neural Operations for CUDA-WASM Integration
2//!
3//! This module implements high-performance neural network operations
4//! using GPU acceleration through WebGPU/CUDA backends.
5
6use super::{
7    BufferHandle, GpuBackendTrait, MemoryManagerTrait, NeuralIntegrationError, 
8    NeuralOperation, NeuralResult, ActivationFunction,
9};
10use std::sync::Arc;
11
12/// Execute a neural operation on GPU with automatic optimization
13pub fn execute_operation<T>(
14    operation: NeuralOperation<T>,
15    inputs: &[T],
16    backend: &Arc<dyn GpuBackendTrait>,
17    memory_manager: &Arc<dyn MemoryManagerTrait>,
18) -> NeuralResult<Vec<T>>
19where
20    T: Clone + Send + Sync + 'static + bytemuck::Pod,
21{
22    match operation {
23        NeuralOperation::MatrixMultiply { a_rows, a_cols, b_cols, _phantom } => {
24            execute_matrix_multiply(a_rows, a_cols, b_cols, inputs, backend, memory_manager)
25        }
26        
27        NeuralOperation::VectorAdd { size, _phantom } => {
28            execute_vector_add(size, inputs, backend, memory_manager)
29        }
30        
31        NeuralOperation::ActivationFunction { function, size, _phantom } => {
32            execute_activation_function(function, size, inputs, backend, memory_manager)
33        }
34        
35        NeuralOperation::Convolution { channels, kernel_size, stride, _phantom } => {
36            execute_convolution(channels, kernel_size, stride, inputs, backend, memory_manager)
37        }
38        
39        NeuralOperation::ForwardPropagation { layer_sizes, _phantom } => {
40            execute_forward_propagation(&layer_sizes, inputs, backend, memory_manager)
41        }
42        
43        NeuralOperation::BackwardPropagation { layer_sizes, _phantom } => {
44            execute_backward_propagation(&layer_sizes, inputs, backend, memory_manager)
45        }
46        
47        NeuralOperation::Custom { kernel_source, name, _phantom } => {
48            execute_custom_kernel(&kernel_source, &name, inputs, backend, memory_manager)
49        }
50    }
51}
52
53/// Process multiple operations in batch for efficiency
54pub fn process_batch<T>(
55    operations: Vec<NeuralOperation<T>>,
56    inputs: Vec<Vec<T>>,
57    backend: &Option<Arc<dyn GpuBackendTrait>>,
58    memory_manager: &Arc<dyn MemoryManagerTrait>,
59    batch_size: usize,
60) -> NeuralResult<Vec<Vec<T>>>
61where
62    T: Clone + Send + Sync + 'static + bytemuck::Pod + num_traits::Float,
63{
64    if operations.len() != inputs.len() {
65        return Err(NeuralIntegrationError::OperationError(
66            "Operations and inputs count mismatch".to_string()
67        ));
68    }
69    
70    let mut results = Vec::with_capacity(operations.len());
71    
72    if let Some(backend) = backend {
73        // GPU batch processing
74        for chunk in operations.chunks(batch_size).zip(inputs.chunks(batch_size)) {
75            let (ops, ins) = chunk;
76            let batch_results = execute_batch_gpu(ops, ins, backend, memory_manager)?;
77            results.extend(batch_results);
78        }
79    } else {
80        // CPU batch processing
81        for (operation, input) in operations.into_iter().zip(inputs.into_iter()) {
82            let result = super::bridge::execute_cpu_fallback(operation, &input)?;
83            results.push(result);
84        }
85    }
86    
87    Ok(results)
88}
89
90/// Execute matrix multiplication on GPU
91fn execute_matrix_multiply<T>(
92    a_rows: usize,
93    a_cols: usize,
94    b_cols: usize,
95    inputs: &[T],
96    backend: &Arc<dyn GpuBackendTrait>,
97    memory_manager: &Arc<dyn MemoryManagerTrait>,
98) -> NeuralResult<Vec<T>>
99where
100    T: Clone + Send + Sync + 'static + bytemuck::Pod,
101{
102    // Validate input dimensions
103    let expected_size = a_rows * a_cols + a_cols * b_cols;
104    if inputs.len() < expected_size {
105        return Err(NeuralIntegrationError::OperationError(
106            format!("Expected {} elements, got {}", expected_size, inputs.len())
107        ));
108    }
109    
110    // Convert input data to bytes for GPU transfer
111    let input_bytes: &[u8] = bytemuck::cast_slice(inputs);
112    
113    // Create GPU buffers
114    let input_buffer = memory_manager.transfer_to_gpu(
115        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
116    )?;
117    
118    // Generate optimized matrix multiplication kernel
119    let kernel_source = generate_matrix_multiply_kernel(a_rows, a_cols, b_cols);
120    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
121    
122    // Execute kernel
123    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
124    
125    // Transfer result back to CPU
126    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
127    let result: Vec<T> = result_f32.iter()
128        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
129        .collect();
130    
131    Ok(result)
132}
133
134/// Execute vector addition on GPU
135fn execute_vector_add<T>(
136    size: usize,
137    inputs: &[T],
138    backend: &Arc<dyn GpuBackendTrait>,
139    memory_manager: &Arc<dyn MemoryManagerTrait>,
140) -> NeuralResult<Vec<T>>
141where
142    T: Clone + Send + Sync + 'static + bytemuck::Pod,
143{
144    if inputs.len() < size * 2 {
145        return Err(NeuralIntegrationError::OperationError(
146            format!("Expected {} elements, got {}", size * 2, inputs.len())
147        ));
148    }
149    
150    // Transfer data to GPU
151    let input_buffer = memory_manager.transfer_to_gpu(
152        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
153    )?;
154    
155    // Generate vector addition kernel
156    let kernel_source = generate_vector_add_kernel(size);
157    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
158    
159    // Execute kernel
160    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
161    
162    // Transfer result back
163    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
164    let result: Vec<T> = result_f32.iter()
165        .take(size)
166        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
167        .collect();
168    
169    Ok(result)
170}
171
172/// Execute activation function on GPU
173fn execute_activation_function<T>(
174    function: ActivationFunction,
175    size: usize,
176    inputs: &[T],
177    backend: &Arc<dyn GpuBackendTrait>,
178    memory_manager: &Arc<dyn MemoryManagerTrait>,
179) -> NeuralResult<Vec<T>>
180where
181    T: Clone + Send + Sync + 'static + bytemuck::Pod,
182{
183    if inputs.len() < size {
184        return Err(NeuralIntegrationError::OperationError(
185            format!("Expected {} elements, got {}", size, inputs.len())
186        ));
187    }
188    
189    // Transfer data to GPU
190    let input_buffer = memory_manager.transfer_to_gpu(
191        &inputs.iter().take(size).map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
192    )?;
193    
194    // Generate activation kernel based on function type
195    let kernel_source = generate_activation_kernel(function, size);
196    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
197    
198    // Execute kernel
199    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
200    
201    // Transfer result back
202    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
203    let result: Vec<T> = result_f32.iter()
204        .take(size)
205        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
206        .collect();
207    
208    Ok(result)
209}
210
211/// Execute convolution operation on GPU
212fn execute_convolution<T>(
213    channels: usize,
214    kernel_size: usize,
215    stride: usize,
216    inputs: &[T],
217    backend: &Arc<dyn GpuBackendTrait>,
218    memory_manager: &Arc<dyn MemoryManagerTrait>,
219) -> NeuralResult<Vec<T>>
220where
221    T: Clone + Send + Sync + 'static + bytemuck::Pod,
222{
223    // Transfer data to GPU
224    let input_buffer = memory_manager.transfer_to_gpu(
225        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
226    )?;
227    
228    // Generate convolution kernel
229    let kernel_source = generate_convolution_kernel(channels, kernel_size, stride);
230    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
231    
232    // Execute kernel
233    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
234    
235    // Transfer result back
236    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
237    let result: Vec<T> = result_f32.iter()
238        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
239        .collect();
240    
241    Ok(result)
242}
243
244/// Execute forward propagation through neural network layers
245fn execute_forward_propagation<T>(
246    layer_sizes: &[usize],
247    inputs: &[T],
248    backend: &Arc<dyn GpuBackendTrait>,
249    memory_manager: &Arc<dyn MemoryManagerTrait>,
250) -> NeuralResult<Vec<T>>
251where
252    T: Clone + Send + Sync + 'static + bytemuck::Pod,
253{
254    // Transfer data to GPU
255    let input_buffer = memory_manager.transfer_to_gpu(
256        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
257    )?;
258    
259    // Generate forward propagation kernel
260    let kernel_source = generate_forward_propagation_kernel(layer_sizes);
261    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
262    
263    // Execute kernel
264    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
265    
266    // Transfer result back
267    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
268    let result: Vec<T> = result_f32.iter()
269        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
270        .collect();
271    
272    Ok(result)
273}
274
275/// Execute backward propagation for training
276fn execute_backward_propagation<T>(
277    layer_sizes: &[usize],
278    inputs: &[T],
279    backend: &Arc<dyn GpuBackendTrait>,
280    memory_manager: &Arc<dyn MemoryManagerTrait>,
281) -> NeuralResult<Vec<T>>
282where
283    T: Clone + Send + Sync + 'static + bytemuck::Pod,
284{
285    // Transfer data to GPU
286    let input_buffer = memory_manager.transfer_to_gpu(
287        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
288    )?;
289    
290    // Generate backward propagation kernel
291    let kernel_source = generate_backward_propagation_kernel(layer_sizes);
292    let kernel = super::bridge::extract_wgsl_from_rust(&kernel_source)?;
293    
294    // Execute kernel
295    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
296    
297    // Transfer result back
298    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
299    let result: Vec<T> = result_f32.iter()
300        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
301        .collect();
302    
303    Ok(result)
304}
305
306/// Execute custom CUDA kernel
307fn execute_custom_kernel<T>(
308    kernel_source: &str,
309    name: &str,
310    inputs: &[T],
311    backend: &Arc<dyn GpuBackendTrait>,
312    memory_manager: &Arc<dyn MemoryManagerTrait>,
313) -> NeuralResult<Vec<T>>
314where
315    T: Clone + Send + Sync + 'static + bytemuck::Pod,
316{
317    // Transfer data to GPU
318    let input_buffer = memory_manager.transfer_to_gpu(
319        &inputs.iter().map(|&x| unsafe { std::mem::transmute_copy(&x) }).collect::<Vec<f32>>()
320    )?;
321    
322    // Transpile custom CUDA kernel
323    let kernel = super::bridge::extract_wgsl_from_rust(kernel_source)?;
324    
325    // Execute kernel
326    let output_buffer = backend.execute_kernel(&kernel, &[input_buffer])?;
327    
328    // Transfer result back
329    let result_f32 = memory_manager.transfer_from_gpu(output_buffer)?;
330    let result: Vec<T> = result_f32.iter()
331        .map(|&x| unsafe { std::mem::transmute_copy(&x) })
332        .collect();
333    
334    Ok(result)
335}
336
337/// Execute batch of operations on GPU
338fn execute_batch_gpu<T>(
339    operations: &[NeuralOperation<T>],
340    inputs: &[Vec<T>],
341    backend: &Arc<dyn GpuBackendTrait>,
342    memory_manager: &Arc<dyn MemoryManagerTrait>,
343) -> NeuralResult<Vec<Vec<T>>>
344where
345    T: Clone + Send + Sync + 'static + bytemuck::Pod,
346{
347    let mut results = Vec::with_capacity(operations.len());
348    
349    for (operation, input) in operations.iter().zip(inputs.iter()) {
350        let result = execute_operation(operation.clone(), input, backend, memory_manager)?;
351        results.push(result);
352    }
353    
354    Ok(results)
355}
356
357/// Generate CUDA/WGSL kernel for matrix multiplication
358fn generate_matrix_multiply_kernel(a_rows: usize, a_cols: usize, b_cols: usize) -> String {
359    format!(r#"
360        __global__ void matrix_multiply(float* a, float* b, float* c) {{
361            int row = blockIdx.y * blockDim.y + threadIdx.y;
362            int col = blockIdx.x * blockDim.x + threadIdx.x;
363            
364            if (row < {a_rows} && col < {b_cols}) {{
365                float sum = 0.0f;
366                for (int k = 0; k < {a_cols}; k++) {{
367                    sum += a[row * {a_cols} + k] * b[k * {b_cols} + col];
368                }}
369                c[row * {b_cols} + col] = sum;
370            }}
371        }}
372    "#)
373}
374
375/// Generate CUDA/WGSL kernel for vector addition
376fn generate_vector_add_kernel(size: usize) -> String {
377    format!(r#"
378        __global__ void vector_add(float* a, float* b, float* c) {{
379            int i = blockIdx.x * blockDim.x + threadIdx.x;
380            if (i < {size}) {{
381                c[i] = a[i] + b[i];
382            }}
383        }}
384    "#)
385}
386
387/// Generate CUDA/WGSL kernel for activation functions
388fn generate_activation_kernel(function: ActivationFunction, size: usize) -> String {
389    let activation_code = match function {
390        ActivationFunction::Sigmoid => "1.0f / (1.0f + expf(-x))",
391        ActivationFunction::ReLU => "fmaxf(0.0f, x)",
392        ActivationFunction::Tanh => "tanhf(x)",
393        ActivationFunction::LeakyReLU => "x > 0.0f ? x : 0.01f * x",
394        ActivationFunction::Swish => "x / (1.0f + expf(-x))",
395        ActivationFunction::GELU => "0.5f * x * (1.0f + tanhf(0.7978845608f * (x + 0.044715f * x * x * x)))",
396    };
397    
398    format!(r#"
399        __global__ void activation_function(float* input, float* output) {{
400            int i = blockIdx.x * blockDim.x + threadIdx.x;
401            if (i < {size}) {{
402                float x = input[i];
403                output[i] = {activation_code};
404            }}
405        }}
406    "#)
407}
408
409/// Generate CUDA/WGSL kernel for convolution
410fn generate_convolution_kernel(channels: usize, kernel_size: usize, stride: usize) -> String {
411    format!(r#"
412        __global__ void convolution(float* input, float* kernel, float* output, 
413                                    int input_width, int input_height, int output_width, int output_height) {{
414            int out_x = blockIdx.x * blockDim.x + threadIdx.x;
415            int out_y = blockIdx.y * blockDim.y + threadIdx.y;
416            int channel = blockIdx.z;
417            
418            if (out_x < output_width && out_y < output_height && channel < {channels}) {{
419                float sum = 0.0f;
420                
421                for (int ky = 0; ky < {kernel_size}; ky++) {{
422                    for (int kx = 0; kx < {kernel_size}; kx++) {{
423                        int in_x = out_x * {stride} + kx;
424                        int in_y = out_y * {stride} + ky;
425                        
426                        if (in_x < input_width && in_y < input_height) {{
427                            int input_idx = channel * input_width * input_height + in_y * input_width + in_x;
428                            int kernel_idx = channel * {kernel_size} * {kernel_size} + ky * {kernel_size} + kx;
429                            sum += input[input_idx] * kernel[kernel_idx];
430                        }}
431                    }}
432                }}
433                
434                int output_idx = channel * output_width * output_height + out_y * output_width + out_x;
435                output[output_idx] = sum;
436            }}
437        }}
438    "#)
439}
440
441/// Generate CUDA/WGSL kernel for forward propagation
442fn generate_forward_propagation_kernel(layer_sizes: &[usize]) -> String {
443    let num_layers = layer_sizes.len();
444    let weights_calculation = (0..num_layers-1).map(|i| {
445        format!(r#"
446            // Layer {} to {}
447            if (layer == {}) {{
448                for (int j = 0; j < {}; j++) {{
449                    float sum = 0.0f;
450                    for (int k = 0; k < {}; k++) {{
451                        sum += activations[prev_layer_offset + k] * weights[weight_offset + j * {} + k];
452                    }}
453                    activations[current_layer_offset + j] = 1.0f / (1.0f + expf(-sum)); // Sigmoid
454                }}
455            }}
456        "#, i, i+1, i, layer_sizes[i+1], layer_sizes[i], layer_sizes[i])
457    }).collect::<Vec<_>>().join("\n");
458    
459    format!(r#"
460        __global__ void forward_propagation(float* inputs, float* weights, float* biases, float* activations) {{
461            int neuron = blockIdx.x * blockDim.x + threadIdx.x;
462            int layer = blockIdx.y;
463            
464            // Copy inputs to first layer
465            if (layer == 0 && neuron < {}) {{
466                activations[neuron] = inputs[neuron];
467                return;
468            }}
469            
470            // Calculate layer offsets
471            int prev_layer_offset = 0;
472            int current_layer_offset = 0;
473            int weight_offset = 0;
474            
475            for (int i = 0; i < layer; i++) {{
476                if (i < layer - 1) prev_layer_offset += layer_sizes[i];
477                current_layer_offset += layer_sizes[i];
478                if (i < layer - 1) weight_offset += layer_sizes[i] * layer_sizes[i + 1];
479            }}
480            
481            {}
482        }}
483    "#, layer_sizes[0], weights_calculation)
484}
485
486/// Generate CUDA/WGSL kernel for backward propagation
487fn generate_backward_propagation_kernel(layer_sizes: &[usize]) -> String {
488    format!(r#"
489        __global__ void backward_propagation(float* activations, float* weights, 
490                                           float* errors, float* gradients, float* targets) {{
491            int neuron = blockIdx.x * blockDim.x + threadIdx.x;
492            int layer = blockIdx.y;
493            
494            // Calculate output layer errors
495            if (layer == {} - 1) {{
496                if (neuron < {}) {{
497                    float output = activations[neuron]; // Assuming output layer offset
498                    float target = targets[neuron];
499                    errors[neuron] = (output - target) * output * (1.0f - output); // Sigmoid derivative
500                }}
501                return;
502            }}
503            
504            // Backpropagate errors for hidden layers
505            // Implementation depends on network architecture
506            // This is a simplified version
507            if (layer > 0 && neuron < layer_sizes[layer]) {{
508                float error_sum = 0.0f;
509                for (int next_neuron = 0; next_neuron < layer_sizes[layer + 1]; next_neuron++) {{
510                    error_sum += errors[next_neuron] * weights[neuron * layer_sizes[layer + 1] + next_neuron];
511                }}
512                float activation = activations[neuron];
513                errors[neuron] = error_sum * activation * (1.0f - activation);
514            }}
515        }}
516    "#, layer_sizes.len(), layer_sizes.last().unwrap_or(&0))
517}
518
519#[cfg(test)]
520mod tests {
521    use super::*;
522    
523    #[test]
524    fn test_kernel_generation() {
525        let kernel = generate_matrix_multiply_kernel(4, 4, 4);
526        assert!(kernel.contains("matrix_multiply"));
527        assert!(kernel.contains("blockIdx"));
528        assert!(kernel.contains("threadIdx"));
529    }
530    
531    #[test]
532    fn test_activation_kernel_generation() {
533        let kernel = generate_activation_kernel(ActivationFunction::ReLU, 128);
534        assert!(kernel.contains("fmaxf"));
535        assert!(kernel.contains("activation_function"));
536    }
537    
538    #[test]
539    fn test_vector_add_kernel() {
540        let kernel = generate_vector_add_kernel(256);
541        assert!(kernel.contains("vector_add"));
542        assert!(kernel.contains("256"));
543    }
544}