cubek_convolution/components/global/layout/
weight.rs1use cubecl::prelude::*;
2use cubecl::std::{
3 FastDivmod, FastDivmodArgs,
4 tensor::layout::{Coords3d, Layout, LayoutExpand},
5};
6use cubek_matmul::components::{
7 MatmulElems,
8 global::{GlobalConfig, memory::GlobalMemoryConfig},
9};
10
11use crate::components::{
12 ConvGemmConfig, ConvolutionConfig, ConvolutionParams, ConvolutionProblem,
13 global::{args::RuntimeArgs, layout::NhwcCoords},
14};
15
16#[derive(CubeType, CubeLaunch, Clone)]
19pub struct WeightLayout {
20 pub padded_channels: FastDivmod,
22
23 pub shape_k: u32,
25 pub shape_n: u32,
27
28 #[cube(comptime)]
30 pub params: ConvolutionParams,
31 #[cube(comptime)]
33 pub config: GlobalMemoryConfig,
34}
35
36#[cube]
37impl WeightLayout {
38 pub fn new<E: Numeric, G: GlobalConfig>(
39 args: &RuntimeArgs,
40 #[comptime] config: ConvolutionConfig<G>,
41 ) -> WeightLayout {
42 WeightLayout {
43 shape_k: args.shape_k,
44 shape_n: args.shape_n,
45 padded_channels: args.padded_channels,
46 params: config.convolution_params,
47 config: config.rhs_global_memory_config(),
48 }
49 }
50}
51
52#[cube]
53impl Layout for WeightLayout {
54 type Coordinates = Coords3d;
55 type SourceCoordinates = NhwcCoords;
56
57 fn to_source_pos(&self, coords: Self::Coordinates) -> NhwcCoords {
58 let params = comptime![self.params];
59 let (_, k, n) = coords;
60
61 let (mut rem, in_c) = self.padded_channels.div_mod(k);
62
63 let spatial_dims = comptime![params.dimensionality.num_dims()];
64 let mut kernel_pos = Sequence::<i32>::new();
65
66 #[unroll]
67 for i in 0..spatial_dims {
68 let dim = comptime![spatial_dims - i - 1];
69 let ksize = comptime![params.kernel_size[dim as usize]];
70 let k_pos = rem % ksize;
71 rem /= ksize;
72
73 kernel_pos.push(k_pos as i32);
74 }
75
76 let kernel_pos = kernel_pos.rev();
77
78 NhwcCoords {
79 batch: n,
80 spatial: kernel_pos,
81 channel: in_c,
82 }
83 }
84
85 fn to_source_pos_checked(&self, coords: Self::Coordinates) -> (NhwcCoords, bool) {
86 (self.to_source_pos(coords), self.is_in_bounds(coords))
87 }
88
89 fn shape(&self) -> Self::Coordinates {
90 (1, self.shape_k, self.shape_n)
91 }
92
93 fn is_in_bounds(&self, pos: Self::Coordinates) -> bool {
94 let (_, k, n) = pos;
95 let check_k = comptime![self.config.check_row_bounds];
96 let check_n = comptime![self.config.check_col_bounds];
97 (!check_k || k < self.shape_k) && (!check_n || n < self.shape_n)
98 }
99}
100
101impl<'a, R: Runtime> WeightLayoutLaunch<'a, R> {
102 pub fn from_args(
103 client: &ComputeClient<R>,
104 problem: &ConvolutionProblem,
105 params: ConvolutionParams,
106 config: GlobalMemoryConfig,
107 dtypes: &MatmulElems,
108 ) -> Self {
109 let load_width = client.properties().hardware.load_width;
110 let channel_align = load_width / dtypes.lhs_global.size_bits() as u32;
111 let padded_channels = (problem.channels as u32).next_multiple_of(channel_align);
112
113 let size_k = problem.kernel_size.iter().product::<u32>() * padded_channels;
114 let padded_channels = FastDivmodArgs::new(client, padded_channels);
115 let shape_k = ScalarArg::new(size_k);
116 let shape_n = ScalarArg::new(problem.n as u32);
117
118 WeightLayoutLaunch::new(padded_channels, shape_k, shape_n, params, config)
119 }
120}