cubecl_std/tensor/
identity.rs1use cubecl::frontend::TensorHandleRef;
2use cubecl::prelude::*;
3use cubecl::tensor_line_size_parallel;
4use cubecl_core as cubecl;
5
6use super::TensorHandle;
7
8#[cube(launch_unchecked)]
9fn identity_kernel<C: Numeric>(
10 output: &mut Tensor<Line<C>>,
11 gap: u32,
12 #[define(C)] _elem: StorageType,
13) {
14 let pos_x = ABSOLUTE_POS_X * output.line_size();
15 if ABSOLUTE_POS_Y < output.shape(0) && pos_x < output.shape(1) {
16 let mut line = Line::empty(output.line_size()).fill(C::from_int(0));
17 let offs_y = ABSOLUTE_POS_Y * output.stride(0);
18
19 let start_pos = offs_y + pos_x;
20 let mut offset = 0;
21 while offset < output.line_size() {
22 let remainder = (start_pos + offset) % gap;
23 if remainder.is_multiple_of(gap) {
24 line[offset] = C::from_int(1);
25 offset += gap;
26 } else {
27 offset += gap - remainder;
28 }
29 }
30 output[start_pos / output.line_size()] = line;
31 }
32}
33
34pub fn launch<R: Runtime>(client: &ComputeClient<R::Server>, output: &TensorHandle<R>) {
38 let dtype = output.dtype;
39 launch_ref::<R>(client, &output.as_ref(), dtype);
40}
41
42pub fn launch_ref<R: Runtime>(
46 client: &ComputeClient<R::Server>,
47 output: &TensorHandleRef<R>,
48 dtype: StorageType,
49) {
50 assert_eq!(2, output.shape.len(), "input should be a matrix");
51 assert_eq!(
52 output.shape[0], output.shape[1],
53 "input should be a square matrix"
54 );
55
56 let vectorization_factor = tensor_line_size_parallel(
57 R::supported_line_sizes().iter().cloned(),
58 output.shape,
59 output.strides,
60 1,
61 );
62
63 let cube_dim = CubeDim::default();
64 let lines_x = output.shape[1] as u32 / vectorization_factor as u32;
65 let cube_count_x = lines_x.div_ceil(cube_dim.x);
66 let cube_count_y = (output.shape[0] as u32).div_ceil(cube_dim.y);
67 let cube_count = CubeCount::new_2d(cube_count_x, cube_count_y);
68
69 unsafe {
70 identity_kernel::launch_unchecked::<R>(
71 client,
72 cube_count,
73 cube_dim,
74 TensorArg::from_raw_parts_and_size(
75 output.handle,
76 output.strides,
77 output.shape,
78 vectorization_factor,
79 dtype.size(),
80 ),
81 ScalarArg::new(output.strides[0] as u32 + 1),
82 dtype,
83 );
84 }
85}