cubecl_random/
tests_utils.rs1use cubecl::prelude::*;
2use cubecl_core as cubecl;
3
4#[derive(Default, Copy, Clone, Debug)]
5pub struct BinStats {
6 pub count: usize,
7 pub n_runs: usize, }
9
10pub fn calculate_bin_stats<E: Numeric>(
12 numbers: &[E],
13 number_of_bins: usize,
14 low: f32,
15 high: f32,
16) -> Vec<BinStats> {
17 let range = (high - low) / number_of_bins as f32;
18 let mut output: Vec<BinStats> = (0..number_of_bins).map(|_| Default::default()).collect();
19 let mut initialized = false;
20 let mut current_runs = number_of_bins; for number in numbers {
22 let num = number.to_f32().unwrap();
23 if num < low || num > high {
24 continue;
25 }
26 let index = (f32::floor((num - low) / range) as usize).min(number_of_bins - 1);
28 output[index].count += 1;
29 if initialized && index != current_runs {
30 output[current_runs].n_runs += 1;
31 }
32 initialized = true;
33 current_runs = index;
34 }
35 output[current_runs].n_runs += 1;
36 output
37}
38
39pub fn assert_mean_approx_equal<E: Numeric>(data: &[E], expected_mean: f32) {
43 let mut sum = 0.;
44 for elem in data {
45 let elem = elem.to_f32().unwrap();
46 sum += elem;
47 }
48 let mean = sum / (data.len() as f32);
49
50 let mut sum = 0.0;
51 for elem in data {
52 let elem = elem.to_f32().unwrap();
53 let d = elem - mean;
54 sum += d * d;
55 }
56 let var = sum / ((data.len() - 1) as f32);
58 let std = var.sqrt();
59 let z = (mean - expected_mean).abs() / std;
61
62 assert!(
63 z < 3.,
64 "Uniform RNG validation failed: mean={mean}, expected mean={expected_mean}, std={std}",
65 );
66}
67
68pub fn assert_normal_respects_68_95_99_rule<E: Numeric>(data: &[E], mu: f32, s: f32) {
71 let stats = calculate_bin_stats(data, 6, mu - 3. * s, mu + 3. * s);
73 let assert_approx_eq = |count, percent| {
74 let expected = percent * data.len() as f32 / 100.;
75 assert!(f32::abs(count as f32 - expected) < 2000.);
76 };
77 assert_approx_eq(stats[0].count, 2.1);
78 assert_approx_eq(stats[1].count, 13.6);
79 assert_approx_eq(stats[2].count, 34.1);
80 assert_approx_eq(stats[3].count, 34.1);
81 assert_approx_eq(stats[4].count, 13.6);
82 assert_approx_eq(stats[5].count, 2.1);
83}
84
85pub fn assert_number_of_1_proportional_to_prob<E: Numeric>(data: &[E], prob: f32) {
88 let bin_stats = calculate_bin_stats(data, 2, 0., 1.1);
90 assert!(f32::abs((bin_stats[1].count as f32 / data.len() as f32) - prob) < 0.05);
91}
92
93pub fn assert_wald_wolfowitz_runs_test<E: Numeric>(data: &[E], bins_low: f32, bins_high: f32) {
97 let stats = calculate_bin_stats(data, 2, bins_low, bins_high);
99 let n_0 = stats[0].count as f32;
100 let n_1 = stats[1].count as f32;
101 let n_runs = (stats[0].n_runs + stats[1].n_runs) as f32;
102
103 let expectation = (2. * n_0 * n_1) / (n_0 + n_1) + 1.0;
104 let variance = ((2. * n_0 * n_1) * (2. * n_0 * n_1 - n_0 - n_1))
105 / ((n_0 + n_1).powf(2.) * (n_0 + n_1 - 1.));
106 let z = (n_runs - expectation) / f32::sqrt(variance);
107
108 assert!(z.abs() < 2.6, "z: {z}, var: {variance}");
113}
114
115pub fn assert_at_least_one_value_per_bin<E: Numeric>(
117 data: &[E],
118 number_of_bins: usize,
119 bins_low: f32,
120 bins_high: f32,
121) {
122 let stats = calculate_bin_stats(data, number_of_bins, bins_low, bins_high);
123 assert!(stats[0].count >= 1);
124 assert!(stats[1].count >= 1);
125 assert!(stats[2].count >= 1);
126}