cubecl_core/ir/
scope.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
use crate::ir::ConstantScalarValue;

use super::{
    cpa, processing::ScopeProcessing, Elem, Item, Matrix, Operation, Operator, UnaryOperator,
    Variable,
};
use serde::{Deserialize, Serialize};

/// The scope is the main [operation](Operation) and [variable](Variable) container that simplify
/// the process of reading inputs, creating local variables and adding new operations.
///
/// Notes:
///
/// This type isn't responsible for creating [shader bindings](super::Binding) and figuring out which
/// variable can be written to.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
#[allow(missing_docs)]
pub struct Scope {
    pub depth: u8,
    pub operations: Vec<Operation>,
    pub locals: Vec<Variable>,
    matrices: Vec<Variable>,
    slices: Vec<Variable>,
    shared_memories: Vec<Variable>,
    pub const_arrays: Vec<(Variable, Vec<Variable>)>,
    local_arrays: Vec<Variable>,
    reads_global: Vec<(Variable, ReadingStrategy, Variable, Variable)>,
    index_offset_with_output_layout_position: Vec<usize>,
    writes_global: Vec<(Variable, Variable, Variable)>,
    reads_scalar: Vec<(Variable, Variable)>,
    pub layout_ref: Option<Variable>,
    pub undeclared: u16,
}

#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Hash, Eq)]
#[allow(missing_docs)]
pub enum ReadingStrategy {
    /// Each element will be read in a way to be compatible with the output layout.
    OutputLayout,
    /// Keep the current layout.
    Plain,
}

impl Scope {
    /// Create a scope that is at the root of a
    /// [kernel definition](crate::ir::KernelDefinition).
    ///
    /// A local scope can be created with the [child](Self::child) method.
    pub fn root() -> Self {
        Self {
            depth: 0,
            operations: Vec::new(),
            locals: Vec::new(),
            matrices: Vec::new(),
            slices: Vec::new(),
            local_arrays: Vec::new(),
            shared_memories: Vec::new(),
            const_arrays: Vec::new(),
            reads_global: Vec::new(),
            index_offset_with_output_layout_position: Vec::new(),
            writes_global: Vec::new(),
            reads_scalar: Vec::new(),
            layout_ref: None,
            undeclared: 0,
        }
    }

    /// Create a variable initialized at zero.
    pub fn zero<I: Into<Item>>(&mut self, item: I) -> Variable {
        let local = self.create_local(item);
        let zero: Variable = 0u32.into();
        cpa!(self, local = zero);
        local
    }

    /// Create a variable initialized at some value.
    pub fn create_with_value<E, I>(&mut self, value: E, item: I) -> Variable
    where
        E: num_traits::ToPrimitive,
        I: Into<Item> + Copy,
    {
        let item: Item = item.into();
        let value = match item.elem() {
            Elem::Float(kind) => ConstantScalarValue::Float(value.to_f64().unwrap(), kind),
            Elem::Int(kind) => ConstantScalarValue::Int(value.to_i64().unwrap(), kind),
            Elem::AtomicInt(kind) => ConstantScalarValue::Int(value.to_i64().unwrap(), kind),
            Elem::UInt => ConstantScalarValue::UInt(value.to_u64().unwrap()),
            Elem::AtomicUInt => ConstantScalarValue::UInt(value.to_u64().unwrap()),
            Elem::Bool => ConstantScalarValue::Bool(value.to_u32().unwrap() == 1),
        };
        let local = self.create_local(item);
        let value = Variable::ConstantScalar(value);
        cpa!(self, local = value);
        local
    }

    /// Create a matrix variable
    pub fn create_matrix(&mut self, matrix: Matrix) -> Variable {
        let index = self.matrices.len() as u16;
        let variable = Variable::Matrix {
            id: index,
            mat: matrix,
            depth: self.depth,
        };
        self.matrices.push(variable);
        variable
    }

    /// Create a slice variable
    pub fn create_slice(&mut self, item: Item) -> Variable {
        let id = self.slices.len() as u16;
        let variable = Variable::Slice {
            id,
            item,
            depth: self.depth,
        };
        self.slices.push(variable);
        variable
    }

    /// Create a local variable of the given [item type](Item).
    pub fn create_local<I: Into<Item>>(&mut self, item: I) -> Variable {
        let item = item.into();
        let index = self.new_local_index();
        let local = Variable::Local {
            id: index,
            item,
            depth: self.depth,
        };
        self.locals.push(local);
        local
    }

    /// Create a new undeclared local, but doesn't perform the declaration.
    ///
    /// Useful for _for loops_ and other algorithms that require the control over initialization.
    pub fn create_local_undeclared(&mut self, item: Item) -> Variable {
        let index = self.new_local_index();
        let local = Variable::Local {
            id: index,
            item,
            depth: self.depth,
        };
        self.undeclared += 1;
        local
    }

    /// Create a new undeclared local binding, but doesn't perform the declaration.
    ///
    /// Useful for temporaries and other algorithms that require the control over initialization.
    pub fn create_local_binding(&mut self, item: Item) -> Variable {
        let index = self.new_local_index();
        let local = Variable::LocalBinding {
            id: index,
            item,
            depth: self.depth,
        };
        self.undeclared += 1;
        local
    }

    /// Reads an input array to a local variable.
    ///
    /// The index refers to the argument position of the array in the compute shader.
    pub fn read_array<I: Into<Item>>(
        &mut self,
        index: u16,
        item: I,
        position: Variable,
    ) -> Variable {
        self.read_input_strategy(index, item.into(), ReadingStrategy::OutputLayout, position)
    }

    /// Reads an input scalar to a local variable.
    ///
    /// The index refers to the scalar position for the same [element](Elem) type.
    pub fn read_scalar(&mut self, index: u16, elem: Elem) -> Variable {
        let local = Variable::LocalBinding {
            id: self.new_local_index(),
            item: Item::new(elem),
            depth: self.depth,
        };
        let scalar = Variable::GlobalScalar { id: index, elem };

        self.reads_scalar.push((local, scalar));

        local
    }

    /// Retrieve the last local variable that was created.
    pub fn last_local_index(&self) -> Option<&Variable> {
        self.locals.last()
    }

    /// Writes a variable to given output.
    ///
    /// Notes:
    ///
    /// This should only be used when doing compilation.
    pub fn write_global(&mut self, input: Variable, output: Variable, position: Variable) {
        // This assumes that all outputs have the same layout
        if self.layout_ref.is_none() {
            self.layout_ref = Some(output);
        }
        self.writes_global.push((input, output, position));
    }

    /// Writes a variable to given output.
    ///
    /// Notes:
    ///
    /// This should only be used when doing compilation.
    pub fn write_global_custom(&mut self, output: Variable) {
        // This assumes that all outputs have the same layout
        if self.layout_ref.is_none() {
            self.layout_ref = Some(output);
        }
    }

    /// Update the [reading strategy](ReadingStrategy) for an input array.
    ///
    /// Notes:
    ///
    /// This should only be used when doing compilation.
    pub(crate) fn update_read(&mut self, index: u16, strategy: ReadingStrategy) {
        if let Some((_, strategy_old, _, _position)) = self
            .reads_global
            .iter_mut()
            .find(|(var, _, _, _)| var.index() == Some(index))
        {
            *strategy_old = strategy;
        }
    }

    #[allow(dead_code)]
    pub fn read_globals(&self) -> Vec<(u16, ReadingStrategy)> {
        self.reads_global
            .iter()
            .map(|(var, strategy, _, _)| match var {
                Variable::GlobalInputArray { id, .. } => (*id, *strategy),
                _ => panic!("Can only read global input arrays."),
            })
            .collect()
    }

    /// Register an [operation](Operation) into the scope.
    pub fn register<T: Into<Operation>>(&mut self, operation: T) {
        self.operations.push(operation.into())
    }

    /// Create an empty child scope.
    pub fn child(&mut self) -> Self {
        Self {
            depth: self.depth + 1,
            operations: Vec::new(),
            locals: Vec::new(),
            matrices: Vec::new(),
            slices: Vec::new(),
            shared_memories: Vec::new(),
            const_arrays: Vec::new(),
            local_arrays: Vec::new(),
            reads_global: Vec::new(),
            index_offset_with_output_layout_position: Vec::new(),
            writes_global: Vec::new(),
            reads_scalar: Vec::new(),
            layout_ref: self.layout_ref,
            undeclared: 0,
        }
    }

    /// Returns the variables and operations to be declared and executed.
    ///
    /// Notes:
    ///
    /// New operations and variables can be created within the same scope without having name
    /// conflicts.
    pub fn process(&mut self) -> ScopeProcessing {
        self.undeclared += self.locals.len() as u16;

        let mut variables = core::mem::take(&mut self.locals);

        for var in self.matrices.drain(..) {
            variables.push(var);
        }
        for var in self.slices.drain(..) {
            variables.push(var);
        }

        let mut operations = Vec::new();

        for (local, scalar) in self.reads_scalar.drain(..) {
            operations.push(
                Operator::Assign(UnaryOperator {
                    input: scalar,
                    out: local,
                })
                .into(),
            );
            variables.push(local);
        }

        for op in self.operations.drain(..) {
            operations.push(op);
        }

        ScopeProcessing {
            variables,
            operations,
        }
        .optimize()
    }

    pub fn new_local_index(&self) -> u16 {
        self.locals.len() as u16 + self.undeclared
    }

    fn new_shared_index(&self) -> u16 {
        self.shared_memories.len() as u16
    }

    fn new_const_array_index(&self) -> u16 {
        self.const_arrays.len() as u16
    }

    fn new_local_array_index(&self) -> u16 {
        self.local_arrays.len() as u16
    }

    fn read_input_strategy(
        &mut self,
        index: u16,
        item: Item,
        strategy: ReadingStrategy,
        position: Variable,
    ) -> Variable {
        let item_global = match item.elem() {
            Elem::Bool => Item {
                elem: Elem::UInt,
                vectorization: item.vectorization,
            },
            _ => item,
        };
        let input = Variable::GlobalInputArray {
            id: index,
            item: item_global,
        };
        let index = self.new_local_index();
        let local = Variable::Local {
            id: index,
            item,
            depth: self.depth,
        };
        self.reads_global.push((input, strategy, local, position));
        self.locals.push(local);
        local
    }

    /// Create a shared variable of the given [item type](Item).
    pub fn create_shared<I: Into<Item>>(&mut self, item: I, shared_memory_size: u32) -> Variable {
        let item = item.into();
        let index = self.new_shared_index();
        let shared_memory = Variable::SharedMemory {
            id: index,
            item,
            length: shared_memory_size,
        };
        self.shared_memories.push(shared_memory);
        shared_memory
    }

    /// Create a shared variable of the given [item type](Item).
    pub fn create_const_array<I: Into<Item>>(&mut self, item: I, data: Vec<Variable>) -> Variable {
        let item = item.into();
        let index = self.new_const_array_index();
        let const_array = Variable::ConstantArray {
            id: index,
            item,
            length: data.len() as u32,
        };
        self.const_arrays.push((const_array, data));
        const_array
    }

    /// Create a local array of the given [item type](Item).
    pub fn create_local_array<I: Into<Item>>(&mut self, item: I, array_size: u32) -> Variable {
        let item = item.into();
        let index = self.new_local_array_index();
        let local_array = Variable::LocalArray {
            id: index,
            item,
            depth: self.depth,
            length: array_size,
        };
        self.local_arrays.push(local_array);
        local_array
    }
}