cubecl_core/frontend/container/array/
base.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
use std::{marker::PhantomData, num::NonZero};

use crate::frontend::{
    CubePrimitive, ExpandElement, ExpandElementBaseInit, ExpandElementTyped, IntoRuntime,
};
use crate::prelude::SizedContainer;
use crate::{
    frontend::CubeType,
    ir::{Elem, Item, Metadata},
    unexpanded,
};
use crate::{
    frontend::{indexation::Index, CubeContext},
    prelude::{assign, index, index_assign},
};

/// A contiguous array of elements.
pub struct Array<E> {
    _val: PhantomData<E>,
}

/// Module that contains the implementation details of the new function.
mod new {
    use super::*;
    use crate::ir::Variable;

    impl<T: CubePrimitive + Clone> Array<T> {
        /// Create a new array of the given length.
        #[allow(unused_variables)]
        pub fn new<L: Index>(length: L) -> Self {
            Array { _val: PhantomData }
        }

        /// Create an array from data.
        pub fn from_data<C: CubePrimitive>(_data: impl IntoIterator<Item = C>) -> Self {
            Array { _val: PhantomData }
        }

        /// Expand function of [new](Array::new).
        pub fn __expand_new(
            context: &mut CubeContext,
            size: ExpandElementTyped<u32>,
        ) -> <Self as CubeType>::ExpandType {
            let size = size
                .constant()
                .expect("Array need constant initialization value")
                .as_u32();
            context
                .create_local_array(Item::new(T::as_elem()), size)
                .into()
        }

        /// Expand function of [from_data](Array::from_data).
        pub fn __expand_from_data<C: CubePrimitive>(
            context: &mut CubeContext,
            data: ArrayData<C>,
        ) -> <Self as CubeType>::ExpandType {
            let var = context.create_const_array(Item::new(T::as_elem()), data.values);
            ExpandElementTyped::new(var)
        }
    }

    /// Type useful for the expand function of [from_data](Array::from_data).
    pub struct ArrayData<C> {
        values: Vec<Variable>,
        _ty: PhantomData<C>,
    }

    impl<C: CubePrimitive + Into<ExpandElementTyped<C>>, T: IntoIterator<Item = C>> From<T>
        for ArrayData<C>
    {
        fn from(value: T) -> Self {
            let values: Vec<Variable> = value
                .into_iter()
                .map(|value| {
                    let value: ExpandElementTyped<C> = value.into();
                    *value.expand
                })
                .collect();
            ArrayData {
                values,
                _ty: PhantomData,
            }
        }
    }
}

/// Module that contains the implementation details of vectorization functions.
///
/// TODO: Remove vectorization in favor of the line API.
mod vectorization {
    use super::*;

    impl<T: CubePrimitive + Clone> Array<T> {
        #[allow(unused_variables)]
        pub fn vectorized<L: Index>(length: L, vectorization_factor: u32) -> Self {
            Array { _val: PhantomData }
        }

        pub fn to_vectorized(self, _vectorization_factor: u32) -> T {
            unexpanded!()
        }

        pub fn __expand_vectorized(
            context: &mut CubeContext,
            size: ExpandElementTyped<u32>,
            vectorization_factor: u32,
        ) -> <Self as CubeType>::ExpandType {
            let size = size.value();
            let size = match size {
                crate::ir::Variable::ConstantScalar(value) => value.as_u32(),
                _ => panic!("Shared memory need constant initialization value"),
            };
            context
                .create_local_array(
                    Item::vectorized(T::as_elem(), NonZero::new(vectorization_factor as u8)),
                    size,
                )
                .into()
        }
    }

    impl<C: CubePrimitive> ExpandElementTyped<Array<C>> {
        pub fn __expand_to_vectorized_method(
            self,
            context: &mut CubeContext,
            vectorization_factor: ExpandElementTyped<u32>,
        ) -> ExpandElementTyped<C> {
            let factor = vectorization_factor
                .constant()
                .expect("Vectorization must be comptime")
                .as_u32();
            let var = self.expand.clone();
            let item = Item::vectorized(var.item().elem(), NonZero::new(factor as u8));

            let new_var = if factor == 1 {
                let new_var = context.create_local_binding(item);
                let element =
                    index::expand(context, self.clone(), ExpandElementTyped::from_lit(0u32));
                assign::expand(context, element, new_var.clone().into());
                new_var
            } else {
                let new_var = context.create_local_variable(item);
                for i in 0..factor {
                    let expand: Self = self.expand.clone().into();
                    let element = index::expand(context, expand, ExpandElementTyped::from_lit(i));
                    index_assign::expand::<Array<C>>(
                        context,
                        new_var.clone().into(),
                        ExpandElementTyped::from_lit(i),
                        element,
                    );
                }
                new_var
            };
            new_var.into()
        }
    }
}

/// Module that contains the implementation details of the metadata functions.
mod metadata {
    use super::*;

    impl<E: CubeType> Array<E> {
        /// Obtain the array length
        #[allow(clippy::len_without_is_empty)]
        pub fn len(&self) -> u32 {
            unexpanded!()
        }
    }

    impl<T: CubeType> ExpandElementTyped<Array<T>> {
        // Expand method of [len](Array::len).
        pub fn __expand_len_method(self, context: &mut CubeContext) -> ExpandElementTyped<u32> {
            let out = context.create_local_binding(Item::new(Elem::UInt));
            context.register(Metadata::Length {
                var: self.expand.into(),
                out: out.clone().into(),
            });
            out.into()
        }
    }
}

/// Module that contains the implementation details of the index functions.
mod indexation {
    use crate::{
        ir::{BinaryOperator, Operator},
        prelude::{CubeIndex, CubeIndexMut},
    };

    use super::*;

    impl<E: CubePrimitive> Array<E> {
        /// Perform an unchecked index into the array
        ///
        /// # Safety
        /// Out of bounds indexing causes undefined behaviour and may segfault. Ensure index is
        /// always in bounds
        pub unsafe fn index_unchecked<I: Index>(&self, _i: I) -> &E
        where
            Self: CubeIndex<I>,
        {
            unexpanded!()
        }

        /// Perform an unchecked index assignment into the array
        ///
        /// # Safety
        /// Out of bounds indexing causes undefined behaviour and may segfault. Ensure index is
        /// always in bounds
        pub unsafe fn index_assign_unchecked<I: Index>(&mut self, _i: I, _value: E)
        where
            Self: CubeIndexMut<I>,
        {
            unexpanded!()
        }
    }

    impl<E: CubePrimitive> ExpandElementTyped<Array<E>> {
        pub fn __expand_index_unchecked_method(
            self,
            context: &mut CubeContext,
            i: ExpandElementTyped<u32>,
        ) -> ExpandElementTyped<E> {
            let out = context.create_local_binding(self.expand.item());
            context.register(Operator::UncheckedIndex(BinaryOperator {
                out: *out,
                lhs: *self.expand,
                rhs: i.expand.consume(),
            }));
            out.into()
        }

        pub fn __expand_index_assign_unchecked_method(
            self,
            context: &mut CubeContext,
            i: ExpandElementTyped<u32>,
            value: ExpandElementTyped<E>,
        ) {
            context.register(Operator::UncheckedIndexAssign(BinaryOperator {
                out: *self.expand,
                lhs: i.expand.consume(),
                rhs: value.expand.consume(),
            }));
        }
    }
}

impl<E: CubePrimitive> IntoRuntime for Array<E> {
    fn __expand_runtime_method(self, _context: &mut CubeContext) -> Self::ExpandType {
        unimplemented!("Array can't exist at compile time")
    }
}

impl<C: CubeType> CubeType for Array<C> {
    type ExpandType = ExpandElementTyped<Array<C>>;
}

impl<C: CubeType> CubeType for &Array<C> {
    type ExpandType = ExpandElementTyped<Array<C>>;
}

impl<C: CubeType> ExpandElementBaseInit for Array<C> {
    fn init_elem(_context: &mut crate::prelude::CubeContext, elem: ExpandElement) -> ExpandElement {
        // The type can't be deeply cloned/copied.
        elem
    }
}

impl<T: CubeType<ExpandType = ExpandElementTyped<T>>> SizedContainer for Array<T> {
    type Item = T;
}

impl<T: CubeType> Iterator for &Array<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        unexpanded!()
    }
}