1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! This module exposes cooperative matrix-multiply and accumulate operations.
//!
//! Most of the functions are actually unsafe, since they mutate their input, even if they are
//! passed as reference.
//!
//! # Example
//!
//! This is a basic 16x16x16 matrix multiplication example.
//!
//! ```rust, ignore
//! #[cube(launch)]
//! pub fn example(lhs: &Array<F16>, rhs: &Array<F16>, out: &mut Array<F32>) {
//!     let a = cmma::Matrix::<F16>::new(
//!         cmma::MatrixIdent::A,
//!         16,
//!         16,
//!         16,
//!         cmma::MatrixLayout::RowMajor,
//!     );
//!     let b = cmma::Matrix::<F16>::new(
//!         cmma::MatrixIdent::B,
//!         16,
//!         16,
//!         16,
//!         cmma::MatrixLayout::ColMajor,
//!     );
//!     let c = cmma::Matrix::<F32>::new(
//!         cmma::MatrixIdent::Accumulator,
//!         16,
//!         16,
//!         16,
//!         cmma::MatrixLayout::Undefined,
//!     );
//!     cmma::fill::<F32>(&c, F32::new(0.0));
//!     cmma::load::<F16>(&a, lhs.as_slice(), UInt::new(16));
//!     cmma::load::<F16>(&b, rhs.as_slice(), UInt::new(16));
//!
//!     cmma::execute::<F16, F16, F32, F32>(&a, &b, &c, &c);
//!
//!     cmma::store::<F32>(
//!         out.as_slice_mut(),
//!         &c,
//!         UInt::new(16),
//!         cmma::MatrixLayout::RowMajor,
//!     );
//! }
//! ```

use std::marker::PhantomData;

use crate::{
    ir::{self, Operation},
    unexpanded,
};

use super::{
    CubeContext, CubePrimitive, CubeType, ExpandElement, ExpandElementTyped, Init, Slice, SliceMut,
    UInt,
};

pub use ir::{MatrixIdent, MatrixLayout};

/// A matrix represent a 2D grid of numbers.
///
/// They can either be in a [row major](MatrixLayout::RowMajor) or a
/// [column major](MatrixLayout::ColMajor) format.
#[derive(Copy, Clone)]
pub struct Matrix<C: CubeType> {
    _c: PhantomData<C>,
}

/// Expand type of [Matrix].
#[derive(Clone)]
pub struct MatrixExpand {
    elem: ExpandElement,
}

impl<C: CubeType> CubeType for Matrix<C> {
    type ExpandType = MatrixExpand;
}

impl Init for MatrixExpand {
    fn init(self, _context: &mut CubeContext) -> Self {
        self
    }
}

impl<C: CubePrimitive> Matrix<C> {
    /// Create a new matrix that is going to be used in the
    /// [matrix-multiply and accumulate](execute()) function.
    ///
    /// You have to declare the shape used for the execution.
    /// The shape of the current matrix is determined using the [MatrixIdent].
    ///
    /// * [MatrixIdent::A] Shape => (M, K)
    /// * [MatrixIdent::B] Shape => (K, N)
    /// * [MatrixIdent::Accumulator] Shape => (M, N)
    ///
    /// Not all shapes are supported, and the permitted shapes depend on the element type.
    ///
    /// Refer to [nvidia documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#element-types-and-matrix-sizes).
    #[allow(unused_variables)]
    pub fn new(ident: MatrixIdent, m: u32, n: u32, k: u32, layout: MatrixLayout) -> Self {
        Matrix { _c: PhantomData }
    }

    pub fn __expand_new(
        context: &mut CubeContext,
        ident: MatrixIdent,
        m: ExpandElementTyped<UInt>,
        n: ExpandElementTyped<UInt>,
        k: ExpandElementTyped<UInt>,
        layout: MatrixLayout,
    ) -> MatrixExpand {
        let elem = context.create_matrix(ir::Matrix {
            ident,
            m: m.constant().unwrap().as_u32() as u8,
            n: n.constant().unwrap().as_u32() as u8,
            k: k.constant().unwrap().as_u32() as u8,
            elem: C::as_elem(),
            layout,
        });
        MatrixExpand { elem }
    }
}

/// Fill the matrix with the provided value.
#[allow(unused_variables)]
pub fn fill<C: CubeType>(mat: &Matrix<C>, value: C) {
    unexpanded!()
}

/// Module containing the expand function for [fill()].
pub mod fill {
    use super::*;

    /// Expand method of [fill()].
    pub fn __expand<C: CubeType>(
        context: &mut CubeContext,
        mat: MatrixExpand,
        value: ExpandElementTyped<C>,
    ) {
        let value: ExpandElement = value.into();
        context.register(Operation::CoopMma(ir::CoopMma::Fill {
            mat: *mat.elem,
            value: *value,
        }));
    }
}

/// Load the matrix with the provided array using the stride.
#[allow(unused_variables)]
pub fn load<C: CubeType>(mat: &Matrix<C>, value: &Slice<'_, C>, stride: UInt) {
    unexpanded!()
}

/// Module containing the expand function for [load()].
pub mod load {
    use super::*;

    /// Expand method of [load()].
    #[allow(unused_variables)]
    pub fn __expand<C: CubeType>(
        context: &mut CubeContext,
        mat: MatrixExpand,
        value: ExpandElementTyped<Slice<'static, C>>,
        stride: ExpandElementTyped<UInt>,
    ) {
        let stride: ExpandElement = stride.into();

        context.register(Operation::CoopMma(ir::CoopMma::Load {
            mat: *mat.elem,
            value: *value.expand,
            stride: *stride,
        }));
    }
}

/// Store the matrix in the given array following the given stride and layout.
#[allow(unused_variables)]
pub fn store<C: CubePrimitive>(
    output: &mut SliceMut<'_, C>,
    mat: &Matrix<C>,
    stride: UInt,
    layout: MatrixLayout,
) {
    unexpanded!()
}

/// Module containing the expand function for [store()].
pub mod store {
    use super::*;

    /// Expand method of [store()].
    #[allow(unused_variables)]
    pub fn __expand<C: CubePrimitive>(
        context: &mut CubeContext,
        output: ExpandElementTyped<SliceMut<'static, C>>,
        mat: MatrixExpand,
        stride: ExpandElementTyped<UInt>,
        layout: MatrixLayout,
    ) {
        let stride: ExpandElement = stride.into();

        context.register(Operation::CoopMma(ir::CoopMma::Store {
            output: *output.expand,
            mat: *mat.elem,
            stride: *stride,
            layout,
        }));
    }
}

/// Execute the matrix-multiply and accumulate operation on the given [matrices](Matrix).
#[allow(unused_variables)]
pub fn execute<A: CubePrimitive, B: CubePrimitive, C: CubePrimitive, D: CubePrimitive>(
    mat_a: &Matrix<A>,
    mat_b: &Matrix<B>,
    mat_c: &Matrix<C>,
    mat_d: &Matrix<D>,
) {
    unexpanded!()
}

/// Module containing the expand function for [execute()].
pub mod execute {
    use super::*;

    /// Expand method of [execute()].
    pub fn __expand<A: CubePrimitive, B: CubePrimitive, C: CubePrimitive, D: CubePrimitive>(
        context: &mut CubeContext,
        mat_a: MatrixExpand,
        mat_b: MatrixExpand,
        mat_c: MatrixExpand,
        mat_d: MatrixExpand,
    ) {
        context.register(Operation::CoopMma(ir::CoopMma::Execute {
            mat_a: *mat_a.elem,
            mat_b: *mat_b.elem,
            mat_c: *mat_c.elem,
            mat_d: *mat_d.elem,
        }));
    }
}