1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
use crate::compute::{CubeCount, KernelTask};
use crate::ir::{Elem, FloatKind, IntKind};
use crate::prelude::ArrayHandleRef;
use crate::KernelSettings;
use crate::{calculate_num_elems_dyn_rank, frontend::TensorHandleRef, Kernel, Runtime};
use bytemuck::NoUninit;
use cubecl_runtime::client::ComputeClient;
use cubecl_runtime::server::Binding;
use num_traits::ToPrimitive;

/// Prepare a kernel for [launch](KernelLauncher::launch).
pub struct KernelLauncher<R: Runtime> {
    tensors: TensorState<R>,
    scalar_bf16: ScalarState<half::bf16>,
    scalar_f16: ScalarState<half::f16>,
    scalar_f32: ScalarState<f32>,
    scalar_f64: ScalarState<f64>,
    scalar_u32: ScalarState<u32>,
    scalar_i64: ScalarState<i64>,
    scalar_i32: ScalarState<i32>,
    scalar_order: Vec<Elem>,
    pub settings: KernelSettings,
}

impl<R: Runtime> KernelLauncher<R> {
    /// Register a tensor to be launched.
    pub fn register_tensor(&mut self, tensor: &TensorHandleRef<'_, R>) {
        self.tensors.push(tensor);
    }

    /// Register an array to be launched.
    pub fn register_array(&mut self, array: &ArrayHandleRef<'_, R>) {
        self.tensors.push(&array.as_tensor());
    }

    /// Register a u32 scalar to be launched.
    pub fn register_u32(&mut self, scalar: u32) {
        self.register_scalar(Elem::UInt);
        self.scalar_u32.push(scalar);
    }

    /// Register a i32 scalar to be launched.
    pub fn register_i32(&mut self, scalar: i32) {
        self.register_scalar(Elem::Int(IntKind::I32));
        self.scalar_i32.push(scalar);
    }

    /// Register a i64 scalar to be launched.
    pub fn register_i64(&mut self, scalar: i64) {
        self.register_scalar(Elem::Int(IntKind::I64));
        self.scalar_i64.push(scalar);
    }

    /// Register a bf16 scalar to be launched.
    pub fn register_bf16(&mut self, scalar: half::bf16) {
        self.register_scalar(Elem::Float(FloatKind::BF16));
        self.scalar_bf16.push(scalar);
    }

    /// Register a f16 scalar to be launched.
    pub fn register_f16(&mut self, scalar: half::f16) {
        self.register_scalar(Elem::Float(FloatKind::F16));
        self.scalar_f16.push(scalar);
    }

    /// Register a f32 scalar to be launched.
    pub fn register_f32(&mut self, scalar: f32) {
        self.register_scalar(Elem::Float(FloatKind::F32));
        self.scalar_f32.push(scalar);
    }

    /// Register a f64 scalar to be launched.
    pub fn register_f64(&mut self, scalar: f64) {
        self.register_scalar(Elem::Float(FloatKind::F64));
        self.scalar_f64.push(scalar);
    }

    /// Launch the kernel.
    pub fn launch<K: Kernel>(
        self,
        cube_count: CubeCount<R::Server>,
        kernel: K,
        client: &ComputeClient<R::Server, R::Channel>,
    ) {
        let bindings = self.into_bindings(client);

        let kernel = Box::new(KernelTask::<R::Compiler, K>::new(kernel));

        client.execute(kernel, cube_count, bindings);
    }

    /// Launch the kernel without check bounds.
    ///
    /// # Safety
    ///
    /// Out-of-bounds reads and writes can happen.
    pub unsafe fn launch_unchecked<K: Kernel>(
        self,
        cube_count: CubeCount<R::Server>,
        kernel: K,
        client: &ComputeClient<R::Server, R::Channel>,
    ) {
        let bindings = self.into_bindings(client);

        let kernel = Box::new(KernelTask::<R::Compiler, K>::new(kernel));

        client.execute_unchecked(kernel, cube_count, bindings);
    }

    /// We need to create the bindings in the same order they are defined in the compilation step.
    ///
    /// The function [crate::KernelIntegrator::integrate] stars by registering the input tensors followed
    /// by the output tensors. Then the tensor metadata, and the scalars at the end. The scalars
    /// are registered in the same order they are added. This is why we store the scalar data type
    /// in the `scalar_order` vector, so that we can register them in the same order.
    fn into_bindings(
        mut self,
        client: &ComputeClient<R::Server, R::Channel>,
    ) -> Vec<Binding<R::Server>> {
        let mut bindings = Vec::new();

        self.tensors.register(client, &mut bindings);

        for elem in self.scalar_order.drain(..) {
            match elem {
                Elem::Float(kind) => match kind {
                    FloatKind::F16 => self.scalar_f16.register::<R>(client, &mut bindings),
                    FloatKind::BF16 => self.scalar_bf16.register::<R>(client, &mut bindings),
                    FloatKind::F32 => self.scalar_f32.register::<R>(client, &mut bindings),
                    FloatKind::F64 => self.scalar_f64.register::<R>(client, &mut bindings),
                },
                Elem::Int(kind) => match kind {
                    IntKind::I32 => self.scalar_i32.register::<R>(client, &mut bindings),
                    IntKind::I64 => self.scalar_i64.register::<R>(client, &mut bindings),
                },
                Elem::AtomicInt(kind) => match kind {
                    IntKind::I32 => self.scalar_i32.register::<R>(client, &mut bindings),
                    IntKind::I64 => self.scalar_i64.register::<R>(client, &mut bindings),
                },
                Elem::UInt => self.scalar_u32.register::<R>(client, &mut bindings),
                Elem::AtomicUInt => self.scalar_u32.register::<R>(client, &mut bindings),
                Elem::Bool => panic!("Bool can't be passed as bindings."),
            }
        }

        bindings
    }

    fn register_scalar(&mut self, elem: Elem) {
        if !self.scalar_order.contains(&elem) {
            self.scalar_order.push(elem);
        }
    }
}

/// Handles the tensor state.
pub enum TensorState<R: Runtime> {
    /// No tensor is registered yet.
    Empty,
    /// The registered tensors.
    Some {
        bindings: Vec<Binding<R::Server>>,
        metadata: Vec<u32>,
        lengths: Vec<u32>,
    },
}

/// Handles the scalar state of an element type
///
/// The scalars are grouped to reduce the number of buffers needed to send data to the compute device.
pub enum ScalarState<T> {
    /// No scalar of that type is registered yet.
    Empty,
    /// The registered scalars.
    Some(Vec<T>),
}

impl<R: Runtime> TensorState<R> {
    /// Push a new tensor to the state.
    pub fn push(&mut self, tensor: &TensorHandleRef<'_, R>) {
        if let TensorState::Empty = self {
            *self = TensorState::Some {
                bindings: Vec::with_capacity(1),
                metadata: Vec::new(),
                lengths: Vec::new(),
            };
        };

        let (bindings, metadata, lengths) = match self {
            TensorState::Empty => panic!("Should be init"),
            TensorState::Some {
                bindings,
                metadata,
                lengths,
            } => (bindings, metadata, lengths),
        };

        bindings.push(tensor.handle.clone().binding());

        if metadata.is_empty() {
            let rank = tensor.strides.len() as u32;
            metadata.push(rank);
        } else if tensor.strides.len() > metadata[0] as usize {
            let rank = tensor.strides.len() as u32;
            Self::adjust_rank(metadata, bindings.len() - 1, rank);
        }

        Self::register_strides(tensor.strides, tensor.shape, None, metadata);
        Self::register_shape(tensor.shape, None, metadata);

        if R::require_array_lengths() {
            let len = calculate_num_elems_dyn_rank(tensor.shape);
            lengths.push(len as u32);
        }
    }

    fn adjust_rank(metadata: &mut Vec<u32>, num_registered: usize, rank: u32) {
        let old_rank = metadata[0] as usize;
        let rank_diff = rank as usize - old_rank;
        let mut updated_metadata = Vec::with_capacity(2 * rank_diff * num_registered);
        updated_metadata.push(rank);

        for pos in 0..num_registered {
            let stride_index = (pos * old_rank * 2) + 1;
            let shape_index = stride_index + old_rank;

            let strides_old = &metadata[stride_index..stride_index + old_rank];
            let shape_old = &metadata[shape_index..shape_index + old_rank];

            Self::register_strides(
                strides_old,
                shape_old,
                Some(old_rank as u32),
                &mut updated_metadata,
            );
            Self::register_shape(shape_old, Some(old_rank as u32), &mut updated_metadata);
        }

        core::mem::swap(&mut updated_metadata, metadata);
    }

    fn register_strides<T: ToPrimitive>(
        strides: &[T],
        shape: &[T],
        old_rank: Option<u32>,
        output: &mut Vec<u32>,
    ) {
        let old_rank = if let Some(old_rank) = old_rank {
            let rank = output[0];
            let rank_diff = i32::abs(old_rank as i32 - rank as i32) as usize;

            if rank_diff > 0 {
                let padded_strides = shape.iter().map(|a| a.to_u32().unwrap()).sum::<u32>();

                for _ in 0..rank_diff {
                    output.push(padded_strides);
                }
            }

            old_rank as usize
        } else {
            output[0] as usize // same as current.
        };

        for stride in strides.iter().take(old_rank) {
            output.push(stride.to_u32().unwrap());
        }
    }

    fn register_shape<T: ToPrimitive>(shape: &[T], old_rank: Option<u32>, output: &mut Vec<u32>) {
        let old_rank = if let Some(old_rank) = old_rank {
            let rank = output[0];
            let rank_diff = i32::abs(old_rank as i32 - rank as i32) as usize;

            if rank_diff > 0 {
                for _ in 0..rank_diff {
                    output.push(1);
                }
            }

            old_rank as usize
        } else {
            output[0] as usize // same as current
        };

        for elem in shape.iter().take(old_rank) {
            output.push(elem.to_u32().unwrap());
        }
    }

    fn register(
        self,
        client: &ComputeClient<R::Server, R::Channel>,
        bindings_global: &mut Vec<Binding<R::Server>>,
    ) {
        if let Self::Some {
            bindings,
            mut metadata,
            lengths,
        } = self
        {
            if R::require_array_lengths() {
                for len in lengths {
                    metadata.push(len);
                }
            }

            bindings_global.extend(bindings);
            bindings_global.push(client.create(bytemuck::cast_slice(&metadata)).binding());
        }
    }
}

impl<T: NoUninit> ScalarState<T> {
    /// Add a new scalar value to the state.
    pub fn push(&mut self, val: T) {
        match self {
            ScalarState::Empty => *self = Self::Some(vec![val]),
            ScalarState::Some(values) => values.push(val),
        }
    }

    fn register<R: Runtime>(
        &self,
        client: &ComputeClient<R::Server, R::Channel>,
        bindings: &mut Vec<Binding<R::Server>>,
    ) {
        match self {
            ScalarState::Empty => (),
            ScalarState::Some(values) => {
                let handle = client.create(bytemuck::cast_slice(values));
                bindings.push(handle.binding());
            }
        }
    }
}

impl<R: Runtime> Default for KernelLauncher<R> {
    fn default() -> Self {
        Self {
            tensors: TensorState::Empty,
            scalar_bf16: ScalarState::Empty,
            scalar_f16: ScalarState::Empty,
            scalar_f32: ScalarState::Empty,
            scalar_f64: ScalarState::Empty,
            scalar_u32: ScalarState::Empty,
            scalar_i64: ScalarState::Empty,
            scalar_i32: ScalarState::Empty,
            scalar_order: Vec::new(),
            settings: Default::default(),
        }
    }
}