cubecl_convolution/
selection.rs

1use cubecl_core::{Runtime, client::ComputeClient, ir::Elem};
2use cubecl_matmul::components::stage::PartitionBuffering;
3
4use super::base::ConvolutionProblem;
5use cubecl_matmul::components::{MatmulSelection, TilingScheme};
6use cubecl_matmul::{
7    components::tile::TileMatmulFamily,
8    kernels::layered::{NUM_SM_APPROX, NUM_TENSOR_CORES_APPROX, find_instruction_size},
9};
10
11/// A heuristic to find the number of tiles in the stage.
12///
13/// Maximizes tensor core usage unless doing so would significantly impair
14/// parallelization across SMs. It ensures the number of cubes is as close as
15/// possible to the available SMs.
16pub(crate) fn find_stage_size_m_n(
17    m: usize,
18    n: usize,
19    num_sm: usize,
20    max_tensor_cores: usize,
21    instruction_m: usize,
22    instruction_n: usize,
23    stage_size_k: usize,
24) -> (usize, usize) {
25    let max_tiles_elems_m = 256 / instruction_m;
26    let max_tiles_elems_n = 256 / instruction_n;
27    let max_tiles_total_stage = 16 / stage_size_k;
28
29    let mut dim_num_tiles_m = max_tensor_cores
30        .min(max_tiles_elems_m)
31        .min(max_tiles_total_stage);
32
33    let mut dim_num_tiles_n = max_tensor_cores
34        .min(max_tiles_elems_n)
35        .min(max_tiles_total_stage);
36
37    let total_tiles_m = m.div_ceil(instruction_m);
38    let total_tiles_n = n.div_ceil(instruction_n);
39
40    while total_tiles_n < dim_num_tiles_n && dim_num_tiles_n > 1 {
41        dim_num_tiles_n /= 2;
42    }
43
44    let total_tiles = total_tiles_m * total_tiles_n;
45
46    let mut stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
47    let mut num_cubes_expected = (total_tiles + stage_num_tiles - 1) / stage_num_tiles;
48
49    // We keep track of two configurations to select the closest to `num_sm`, whether it's a bit over or under
50    let mut previous_dim_num_tiles = dim_num_tiles_m;
51    let mut previous_num_cubes = num_cubes_expected;
52
53    // Refine tensor core usage to stay as close as possible to `num_sm`
54    while num_cubes_expected < num_sm && dim_num_tiles_m > 1 {
55        previous_dim_num_tiles = dim_num_tiles_m;
56        previous_num_cubes = num_cubes_expected;
57
58        // Reduce tensor core usage
59        dim_num_tiles_m = (dim_num_tiles_m + 1) / 2;
60        stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
61
62        // Number of cubes grows as a consequence of smaller stage
63        num_cubes_expected = (total_tiles + stage_num_tiles - 1) / stage_num_tiles;
64    }
65
66    // Compare previous and current values to determine the closest to `num_sm`
67    if (previous_num_cubes as isize - num_sm as isize).abs()
68        <= (num_cubes_expected as isize - num_sm as isize).abs()
69    {
70        (previous_dim_num_tiles, dim_num_tiles_n)
71    } else {
72        (dim_num_tiles_n, dim_num_tiles_m)
73    }
74}
75
76pub fn convolution_matmul_selection<TMM: TileMatmulFamily, R: Runtime>(
77    client: &ComputeClient<R::Server, R::Channel>,
78    problem: &ConvolutionProblem,
79    plane_dim: u32,
80    elem_stage: Elem,
81    elem_acc: Elem,
82) -> MatmulSelection {
83    // rough heuristic based on previous bench results where 512 channels with a 3x3 kernel seemed
84    // to be the rough cutoff for the k=4 size.
85    let stage_k = if problem.k >= 4096 { 4 } else { 2 };
86
87    let tile_size = find_instruction_size(
88        if TMM::requires_accelerator() {
89            Some((client.properties(), (elem_stage, elem_stage, elem_acc)))
90        } else {
91            None
92        },
93        problem.m,
94        problem.n,
95    );
96
97    let hardware = &client.properties().hardware;
98    let num_sm = hardware
99        .num_streaming_multiprocessors
100        .unwrap_or(NUM_TENSOR_CORES_APPROX);
101    let max_tensor_cores = hardware.num_tensor_cores.unwrap_or(NUM_SM_APPROX);
102
103    let (stage_size_m, stage_size_n) = find_stage_size_m_n(
104        problem.m,
105        problem.n,
106        num_sm as usize,
107        max_tensor_cores as usize,
108        tile_size.m() as usize,
109        tile_size.n() as usize,
110        stage_k as usize,
111    );
112
113    let tiling_scheme = TilingScheme::builder()
114        .with_stage_size((stage_size_m as u32, 1, 1).into())
115        .with_tile_size(tile_size)
116        .with_partition_size((1, stage_size_n as u32, stage_k).into())
117        .build()
118        .unwrap();
119
120    MatmulSelection::builder(tiling_scheme, plane_dim)
121        .partition_buffering(PartitionBuffering::Single)
122        .build()
123}