cubecl_convolution/components/
selection.rs1use cubecl_core::{Runtime, client::ComputeClient, ir::StorageType};
2use cubecl_matmul::components::{
3 MatmulLineSizes, SwizzleConfig,
4 stage::{PartitionBuffering, SwizzleMode},
5};
6
7use cubecl_matmul::components::{
8 MatmulAvailabilityError, MatmulElems, MatmulSelection, TilingScheme, adjust_dtypes,
9};
10use cubecl_matmul::{
11 components::tile::TileMatmulFamily,
12 kernels::layered::{NUM_SM_APPROX, NUM_TENSOR_CORES_APPROX, find_instruction_size},
13};
14
15use crate::components::ConvolutionProblem;
16
17pub(crate) fn find_stage_size_m_n(
23 m: usize,
24 n: usize,
25 num_sm: usize,
26 max_tensor_cores: usize,
27 instruction_m: usize,
28 instruction_n: usize,
29 stage_size_k: usize,
30) -> (usize, usize) {
31 let max_tiles_elems_m = 256 / instruction_m;
32 let max_tiles_elems_n = 256 / instruction_n;
33 let max_tiles_total_stage = 16 / stage_size_k;
34
35 let mut dim_num_tiles_m = max_tensor_cores
36 .min(max_tiles_elems_m)
37 .min(max_tiles_total_stage);
38
39 let mut dim_num_tiles_n = max_tensor_cores
40 .min(max_tiles_elems_n)
41 .min(max_tiles_total_stage);
42
43 let total_tiles_m = m.div_ceil(instruction_m);
44 let total_tiles_n = n.div_ceil(instruction_n);
45
46 while total_tiles_n < dim_num_tiles_n && dim_num_tiles_n > 1 {
47 dim_num_tiles_n /= 2;
48 }
49
50 let total_tiles = total_tiles_m * total_tiles_n;
51
52 let mut stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
53 let mut num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
54
55 let mut previous_dim_num_tiles = dim_num_tiles_m;
57 let mut previous_num_cubes = num_cubes_expected;
58
59 while num_cubes_expected < num_sm && dim_num_tiles_m > 1 {
61 previous_dim_num_tiles = dim_num_tiles_m;
62 previous_num_cubes = num_cubes_expected;
63
64 dim_num_tiles_m = dim_num_tiles_m.div_ceil(2);
66 stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
67
68 num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
70 }
71
72 if (previous_num_cubes as isize - num_sm as isize).abs()
74 <= (num_cubes_expected as isize - num_sm as isize).abs()
75 {
76 (previous_dim_num_tiles, dim_num_tiles_n)
77 } else {
78 (dim_num_tiles_n, dim_num_tiles_m)
79 }
80}
81
82pub fn convolution_matmul_selection<TMM: TileMatmulFamily, R: Runtime>(
83 client: &ComputeClient<R>,
84 problem: &ConvolutionProblem,
85 plane_dim: u32,
86 swizzle: bool,
87 line_sizes: &MatmulLineSizes,
88 dtypes: &mut MatmulElems,
89) -> Result<MatmulSelection, MatmulAvailabilityError> {
90 adjust_dtypes(client, dtypes, TMM::requires_accelerator());
91
92 let stage_k = if problem.k >= 4096 { 4 } else { 2 };
95
96 let tile_size = find_instruction_size::<R, TMM>(client, dtypes, problem.m, problem.n)?;
97
98 let hardware = &client.properties().hardware;
99 let num_sm = hardware
100 .num_streaming_multiprocessors
101 .unwrap_or(NUM_TENSOR_CORES_APPROX);
102 let max_tensor_cores = hardware.num_tensor_cores.unwrap_or(NUM_SM_APPROX);
103
104 let (stage_size_m, stage_size_n) = find_stage_size_m_n(
105 problem.m,
106 problem.n,
107 num_sm as usize,
108 max_tensor_cores as usize,
109 tile_size.m() as usize,
110 tile_size.n() as usize,
111 stage_k as usize,
112 );
113
114 let tiling_scheme = TilingScheme::builder()
115 .with_stage_size((stage_size_m as u32, 1, 1).into())
116 .with_tile_size(tile_size)
117 .with_partition_size((1, stage_size_n as u32, stage_k).into())
118 .build()
119 .unwrap();
120
121 let mut builder = MatmulSelection::builder(tiling_scheme, plane_dim)
122 .partition_buffering(PartitionBuffering::Single);
123
124 if swizzle {
125 let swizzle_dim = tiling_scheme.elements_per_stage_along_k();
126
127 let lhs = select_swizzle(swizzle_dim, *dtypes.lhs_stage, line_sizes.lhs);
128 let rhs = select_swizzle(swizzle_dim, *dtypes.rhs_stage, line_sizes.rhs);
129 builder = builder.shared_swizzle(SwizzleConfig {
130 lhs,
131 rhs,
132 ..Default::default()
133 });
134 }
135
136 Ok(builder.build())
137}
138
139const SWIZZLE_ATOM: usize = 16;
141
142fn select_swizzle(swizzle_dim: u32, elem: StorageType, line_size: u8) -> SwizzleMode {
143 if elem.size() * line_size as usize > SWIZZLE_ATOM {
145 return SwizzleMode::None;
146 }
147 let swizzle_dim_bytes = swizzle_dim as usize * elem.size();
148 if !swizzle_dim_bytes.is_power_of_two() {
149 return SwizzleMode::None;
150 }
151 match swizzle_dim_bytes {
152 32 => SwizzleMode::B32,
153 64 => SwizzleMode::B64,
154 _ => SwizzleMode::B128,
155 }
157}