cubecl_convolution/components/
selection.rs1use cubecl_core::{Runtime, client::ComputeClient};
2use cubecl_matmul::components::stage::PartitionBuffering;
3
4use cubecl_matmul::components::{MatmulElems, MatmulSelection, TilingScheme, adjust_dtypes};
5use cubecl_matmul::{
6 components::tile::TileMatmulFamily,
7 kernels::layered::{NUM_SM_APPROX, NUM_TENSOR_CORES_APPROX, find_instruction_size},
8};
9
10use crate::components::ConvolutionProblem;
11
12pub(crate) fn find_stage_size_m_n(
18 m: usize,
19 n: usize,
20 num_sm: usize,
21 max_tensor_cores: usize,
22 instruction_m: usize,
23 instruction_n: usize,
24 stage_size_k: usize,
25) -> (usize, usize) {
26 let max_tiles_elems_m = 256 / instruction_m;
27 let max_tiles_elems_n = 256 / instruction_n;
28 let max_tiles_total_stage = 16 / stage_size_k;
29
30 let mut dim_num_tiles_m = max_tensor_cores
31 .min(max_tiles_elems_m)
32 .min(max_tiles_total_stage);
33
34 let mut dim_num_tiles_n = max_tensor_cores
35 .min(max_tiles_elems_n)
36 .min(max_tiles_total_stage);
37
38 let total_tiles_m = m.div_ceil(instruction_m);
39 let total_tiles_n = n.div_ceil(instruction_n);
40
41 while total_tiles_n < dim_num_tiles_n && dim_num_tiles_n > 1 {
42 dim_num_tiles_n /= 2;
43 }
44
45 let total_tiles = total_tiles_m * total_tiles_n;
46
47 let mut stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
48 let mut num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
49
50 let mut previous_dim_num_tiles = dim_num_tiles_m;
52 let mut previous_num_cubes = num_cubes_expected;
53
54 while num_cubes_expected < num_sm && dim_num_tiles_m > 1 {
56 previous_dim_num_tiles = dim_num_tiles_m;
57 previous_num_cubes = num_cubes_expected;
58
59 dim_num_tiles_m = dim_num_tiles_m.div_ceil(2);
61 stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
62
63 num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
65 }
66
67 if (previous_num_cubes as isize - num_sm as isize).abs()
69 <= (num_cubes_expected as isize - num_sm as isize).abs()
70 {
71 (previous_dim_num_tiles, dim_num_tiles_n)
72 } else {
73 (dim_num_tiles_n, dim_num_tiles_m)
74 }
75}
76
77pub fn convolution_matmul_selection<TMM: TileMatmulFamily, R: Runtime>(
78 client: &ComputeClient<R::Server>,
79 problem: &ConvolutionProblem,
80 plane_dim: u32,
81 dtypes: &mut MatmulElems,
82) -> MatmulSelection {
83 adjust_dtypes::<R>(client, dtypes, TMM::requires_accelerator());
84
85 let stage_k = if problem.k >= 4096 { 4 } else { 2 };
88
89 let tile_size = find_instruction_size::<R, TMM>(client, dtypes, problem.m, problem.n);
90
91 let hardware = &client.properties().hardware;
92 let num_sm = hardware
93 .num_streaming_multiprocessors
94 .unwrap_or(NUM_TENSOR_CORES_APPROX);
95 let max_tensor_cores = hardware.num_tensor_cores.unwrap_or(NUM_SM_APPROX);
96
97 let (stage_size_m, stage_size_n) = find_stage_size_m_n(
98 problem.m,
99 problem.n,
100 num_sm as usize,
101 max_tensor_cores as usize,
102 tile_size.m() as usize,
103 tile_size.n() as usize,
104 stage_k as usize,
105 );
106
107 let tiling_scheme = TilingScheme::builder()
108 .with_stage_size((stage_size_m as u32, 1, 1).into())
109 .with_tile_size(tile_size)
110 .with_partition_size((1, stage_size_n as u32, stage_k).into())
111 .build()
112 .unwrap();
113
114 MatmulSelection::builder(tiling_scheme, plane_dim)
115 .partition_buffering(PartitionBuffering::Single)
116 .build()
117}