cubecl_convolution/components/
selection.rs

1use cubecl_core::{Runtime, client::ComputeClient};
2use cubecl_matmul::components::stage::PartitionBuffering;
3
4use cubecl_matmul::components::{MatmulElems, MatmulSelection, TilingScheme, adjust_dtypes};
5use cubecl_matmul::{
6    components::tile::TileMatmulFamily,
7    kernels::layered::{NUM_SM_APPROX, NUM_TENSOR_CORES_APPROX, find_instruction_size},
8};
9
10use crate::components::ConvolutionProblem;
11
12/// A heuristic to find the number of tiles in the stage.
13///
14/// Maximizes tensor core usage unless doing so would significantly impair
15/// parallelization across SMs. It ensures the number of cubes is as close as
16/// possible to the available SMs.
17pub(crate) fn find_stage_size_m_n(
18    m: usize,
19    n: usize,
20    num_sm: usize,
21    max_tensor_cores: usize,
22    instruction_m: usize,
23    instruction_n: usize,
24    stage_size_k: usize,
25) -> (usize, usize) {
26    let max_tiles_elems_m = 256 / instruction_m;
27    let max_tiles_elems_n = 256 / instruction_n;
28    let max_tiles_total_stage = 16 / stage_size_k;
29
30    let mut dim_num_tiles_m = max_tensor_cores
31        .min(max_tiles_elems_m)
32        .min(max_tiles_total_stage);
33
34    let mut dim_num_tiles_n = max_tensor_cores
35        .min(max_tiles_elems_n)
36        .min(max_tiles_total_stage);
37
38    let total_tiles_m = m.div_ceil(instruction_m);
39    let total_tiles_n = n.div_ceil(instruction_n);
40
41    while total_tiles_n < dim_num_tiles_n && dim_num_tiles_n > 1 {
42        dim_num_tiles_n /= 2;
43    }
44
45    let total_tiles = total_tiles_m * total_tiles_n;
46
47    let mut stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
48    let mut num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
49
50    // We keep track of two configurations to select the closest to `num_sm`, whether it's a bit over or under
51    let mut previous_dim_num_tiles = dim_num_tiles_m;
52    let mut previous_num_cubes = num_cubes_expected;
53
54    // Refine tensor core usage to stay as close as possible to `num_sm`
55    while num_cubes_expected < num_sm && dim_num_tiles_m > 1 {
56        previous_dim_num_tiles = dim_num_tiles_m;
57        previous_num_cubes = num_cubes_expected;
58
59        // Reduce tensor core usage
60        dim_num_tiles_m = dim_num_tiles_m.div_ceil(2);
61        stage_num_tiles = dim_num_tiles_m * dim_num_tiles_n;
62
63        // Number of cubes grows as a consequence of smaller stage
64        num_cubes_expected = total_tiles.div_ceil(stage_num_tiles);
65    }
66
67    // Compare previous and current values to determine the closest to `num_sm`
68    if (previous_num_cubes as isize - num_sm as isize).abs()
69        <= (num_cubes_expected as isize - num_sm as isize).abs()
70    {
71        (previous_dim_num_tiles, dim_num_tiles_n)
72    } else {
73        (dim_num_tiles_n, dim_num_tiles_m)
74    }
75}
76
77pub fn convolution_matmul_selection<TMM: TileMatmulFamily, R: Runtime>(
78    client: &ComputeClient<R::Server>,
79    problem: &ConvolutionProblem,
80    plane_dim: u32,
81    dtypes: &mut MatmulElems,
82) -> MatmulSelection {
83    adjust_dtypes::<R>(client, dtypes, TMM::requires_accelerator());
84
85    // rough heuristic based on previous bench results where 512 channels with a 3x3 kernel seemed
86    // to be the rough cutoff for the k=4 size.
87    let stage_k = if problem.k >= 4096 { 4 } else { 2 };
88
89    let tile_size = find_instruction_size::<R, TMM>(client, dtypes, problem.m, problem.n);
90
91    let hardware = &client.properties().hardware;
92    let num_sm = hardware
93        .num_streaming_multiprocessors
94        .unwrap_or(NUM_TENSOR_CORES_APPROX);
95    let max_tensor_cores = hardware.num_tensor_cores.unwrap_or(NUM_SM_APPROX);
96
97    let (stage_size_m, stage_size_n) = find_stage_size_m_n(
98        problem.m,
99        problem.n,
100        num_sm as usize,
101        max_tensor_cores as usize,
102        tile_size.m() as usize,
103        tile_size.n() as usize,
104        stage_k as usize,
105    );
106
107    let tiling_scheme = TilingScheme::builder()
108        .with_stage_size((stage_size_m as u32, 1, 1).into())
109        .with_tile_size(tile_size)
110        .with_partition_size((1, stage_size_n as u32, stage_k).into())
111        .build()
112        .unwrap();
113
114    MatmulSelection::builder(tiling_scheme, plane_dim)
115        .partition_buffering(PartitionBuffering::Single)
116        .build()
117}