cubecl_convolution/components/global/layout/
weight.rs1use cubecl::prelude::*;
2use cubecl_core::{self as cubecl};
3use cubecl_matmul::components::{
4 MatmulIdent,
5 global::{GlobalConfig, memory::GlobalMemoryConfig},
6};
7use cubecl_std::{
8 FastDivmod, FastDivmodArgs,
9 tensor::layout::{Coords3d, Layout, LayoutExpand},
10};
11
12use crate::{
13 components::{
14 ConvGemmConfig, ConvolutionConfig, ConvolutionParams, ConvolutionProblem,
15 global::layout::NhwcCoords,
16 },
17 kernels::layered::selector::RuntimeArgs,
18};
19
20#[derive(CubeType, CubeLaunch, Clone)]
23pub struct WeightLayout {
24 pub channels: FastDivmod,
26
27 pub shape_k: u32,
29 pub shape_n: u32,
31
32 #[cube(comptime)]
34 pub params: ConvolutionParams,
35 #[cube(comptime)]
37 pub config: GlobalMemoryConfig,
38}
39
40#[cube]
41impl WeightLayout {
42 pub fn new<E: Numeric, G: GlobalConfig>(
43 args: &RuntimeArgs,
44 #[comptime] config: ConvolutionConfig<G>,
45 ) -> WeightLayout {
46 WeightLayout {
47 shape_k: args.shape_k,
48 shape_n: args.shape_n,
49 channels: args.padded_channels,
50 params: config.convolution_params(),
51 config: config.global_memory_config(MatmulIdent::Rhs),
52 }
53 }
54}
55
56#[cube]
57impl Layout for WeightLayout {
58 type Coordinates = Coords3d;
59 type SourceCoordinates = NhwcCoords;
60
61 fn to_source_pos(&self, coords: Self::Coordinates) -> NhwcCoords {
62 let params = comptime![self.params];
63 let (_, k, n) = coords;
64
65 let (mut rem, in_c) = self.channels.div_mod(k);
66
67 let spatial_dims = comptime![params.dimensionality.num_dims()];
68 let mut kernel_pos = Sequence::<i32>::new();
69
70 #[unroll]
71 for i in 0..spatial_dims {
72 let dim = comptime![spatial_dims - i - 1];
73 let ksize = comptime![params.kernel_size[dim as usize]];
74 let k_pos = rem % ksize;
75 rem /= ksize;
76
77 kernel_pos.push(k_pos as i32);
78 }
79
80 let kernel_pos = kernel_pos.rev();
81
82 NhwcCoords {
83 batch: n,
84 spatial: kernel_pos,
85 channel: in_c,
86 }
87 }
88
89 fn to_source_pos_checked(&self, coords: Self::Coordinates) -> (NhwcCoords, bool) {
90 (self.to_source_pos(coords), self.is_in_bounds(coords))
91 }
92
93 fn shape(&self) -> Self::Coordinates {
94 (1, self.shape_k, self.shape_n)
95 }
96
97 fn is_in_bounds(&self, pos: Self::Coordinates) -> bool {
98 let (_, k, n) = pos;
99 let check_k = comptime![self.config.check_row_bounds];
100 let check_n = comptime![self.config.check_col_bounds];
101 (!check_k || k < self.shape_k) && (!check_n || n < self.shape_n)
102 }
103}
104
105impl<'a, R: Runtime> WeightLayoutLaunch<'a, R> {
106 pub fn from_args(
107 client: &ComputeClient<R::Server>,
108 problem: &ConvolutionProblem,
109 params: ConvolutionParams,
110 config: GlobalMemoryConfig,
111 ) -> Self {
112 let channels = FastDivmodArgs::new(client, problem.channels as u32);
113 let shape_k = ScalarArg::new(problem.k as u32);
114 let shape_n = ScalarArg::new(problem.n as u32);
115
116 WeightLayoutLaunch::new(channels, shape_k, shape_n, params, config)
117 }
118}