cubecl_convolution/kernels/layered/algorithm/
simple_tma.rs1use std::marker::PhantomData;
2
3use cubecl_core::{
4 CubeCount, Runtime,
5 client::ComputeClient,
6 prelude::{Numeric, TensorHandleRef},
7};
8use cubecl_matmul::components::{
9 MatmulElems, MatmulSelection, MatmulSetupError, stage::StridedStageFamily, tile::io::Strided,
10};
11
12use cubecl_matmul::components::stage::NumStages;
13use cubecl_matmul::components::{
14 InvalidConfigError, MatmulIdent, global::args::TensorMapArgs, stage::PlaneMatmulFamily,
15 tile::TileMatmulFamily,
16};
17
18use cubecl_std::{
19 CubeOption,
20 tensor::{TensorHandle, into_contiguous_pitched},
21};
22
23use crate::components::{
24 ConvolutionProblem, Dimensionality, convolution_matmul_selection,
25 global::single_stage::tma::SimpleTmaConvolutionFamily,
26};
27
28use super::Algorithm;
29
30pub const TMA_STRIDE_ALIGN: usize = 16;
31
32pub struct SimpleTmaConvAlgorithm<TMM: TileMatmulFamily> {
34 _tmm: PhantomData<TMM>,
35}
36
37impl<
38 TMM: TileMatmulFamily<
39 LhsTile = Strided,
40 RhsTile = Strided,
41 AccTile = CubeOption<Strided>,
42 OutTile = Strided,
43 >,
44> Algorithm for SimpleTmaConvAlgorithm<TMM>
45{
46 type TileMatmul = TMM;
47 type StageMatmul = PlaneMatmulFamily<
48 Self::TileMatmul,
49 StridedStageFamily,
50 StridedStageFamily,
51 Option<StridedStageFamily>,
52 >;
53 type GlobalConvolution = SimpleTmaConvolutionFamily<Self::StageMatmul>;
54
55 type Args = TensorMapArgs;
56
57 fn cube_count(selection: &MatmulSelection, problem: &ConvolutionProblem) -> CubeCount {
58 let m_stage = selection.tiling_scheme.elements_in_stage_m();
59 let n_stage = selection.tiling_scheme.elements_in_stage_n();
60 let cubes_needed_m = (problem.m as u32).div_ceil(m_stage);
61 let cubes_needed_n = (problem.n as u32).div_ceil(n_stage);
62
63 CubeCount::Static(cubes_needed_m, cubes_needed_n, 1)
64 }
65
66 fn into_tensor_handle<R: Runtime, E: Numeric>(
67 client: &ComputeClient<R::Server>,
68 handle: &TensorHandleRef<'_, R>,
69 ident: MatmulIdent,
70 ) -> TensorHandle<R, E> {
71 into_tensor_handle_tma(client, handle, ident)
72 }
73
74 fn num_stages() -> NumStages {
76 (1, 1).into()
77 }
78
79 fn selection<R: Runtime>(
80 client: &ComputeClient<R::Server>,
81 problem: &ConvolutionProblem,
82 plane_dim: u32,
83 matmul_elems: MatmulElems,
84 ) -> Result<MatmulSelection, MatmulSetupError> {
85 Ok(convolution_matmul_selection::<TMM, R>(
86 client,
87 problem,
88 plane_dim,
89 matmul_elems,
90 ))
91 }
92}
93
94pub(crate) fn into_tensor_handle_tma<R: Runtime, E: Numeric>(
95 client: &ComputeClient<R::Server>,
96 handle: &TensorHandleRef<'_, R>,
97 ident: MatmulIdent,
98) -> TensorHandle<R, E> {
99 let rank = handle.shape.len();
100 let dim_c = rank - 1;
101 let mut handle = if has_valid_layout(handle, ident) {
102 TensorHandle::from_ref(handle)
103 } else {
104 into_contiguous_pitched(client, handle)
105 };
106 match ident {
107 MatmulIdent::Lhs => handle,
108 MatmulIdent::Rhs => {
109 let k_size = handle.shape[1..dim_c].iter().product();
110 handle.shape = vec![handle.shape[0], k_size, handle.shape[dim_c]];
111 handle.strides = vec![
112 handle.strides[0],
113 handle.strides[dim_c - 1],
114 handle.strides[dim_c],
115 ];
116 handle
117 }
118 MatmulIdent::Out => unreachable!(),
119 }
120}
121
122pub(crate) fn has_valid_layout<R: Runtime>(
123 handle: &TensorHandleRef<'_, R>,
124 ident: MatmulIdent,
125) -> bool {
126 let stride_align = TMA_STRIDE_ALIGN / handle.elem_size;
127 let rank = handle.shape.len();
128 let dim_c = rank - 1;
129
130 let aligned = handle.strides[..dim_c]
131 .iter()
132 .all(|stride| stride % stride_align == 0);
133
134 let valid_layout = match ident {
135 MatmulIdent::Lhs => handle.strides[dim_c] == 1,
136 MatmulIdent::Rhs => {
137 let c_major = handle.strides[dim_c] == 1;
138 let mut kernel_contig = true;
139 for i in 1..dim_c - 1 {
140 kernel_contig &= handle.strides[i] == handle.strides[i + 1] * handle.shape[i + 1];
141 }
142 c_major && kernel_contig
143 }
144 MatmulIdent::Out => unreachable!(),
145 };
146
147 valid_layout && aligned
148}
149
150pub(crate) fn check_problem_tma(problem: &ConvolutionProblem) -> Result<(), InvalidConfigError> {
151 fn check_range(
152 value: isize,
153 name: impl FnOnce() -> String,
154 min: isize,
155 max: isize,
156 ) -> Result<(), InvalidConfigError> {
157 if value < min || value > max {
158 let name = name();
159 Err(Box::new(format!(
160 "value {name} outside of valid range ({min}, {max})"
161 )))
162 } else {
163 Ok(())
164 }
165 }
166
167 let (corner_min, corner_max) = match problem.dimensionality {
168 Dimensionality::Dim1 => (-(2isize.pow(15)), 2isize.pow(15) - 1),
169 Dimensionality::Dim2 => (-(2isize.pow(7)), 2isize.pow(7) - 1),
170 Dimensionality::Dim3 => (-(2isize.pow(4)), 2isize.pow(4) - 1),
171 };
172
173 let corner = calculate_upper_corner(&problem.padding, &problem.kernel_size, &problem.dilation);
174 for (i, offs) in corner.iter().enumerate() {
175 check_range(
176 *offs as isize,
177 || format!("corner[{i}]"),
178 corner_min,
179 corner_max,
180 )?;
181 }
182
183 let offset_max = match problem.dimensionality {
184 Dimensionality::Dim1 => 2isize.pow(16) - 1,
185 Dimensionality::Dim2 => 2isize.pow(8) - 1,
186 Dimensionality::Dim3 => 2isize.pow(5) - 1,
187 };
188
189 for i in 0..problem.kernel_size.len() {
190 let offset = (problem.kernel_size[i] - 1) * problem.dilation[i];
191 check_range(
192 offset as isize,
193 || format!("kernel size {i}"),
194 0,
195 offset_max,
196 )?;
197 check_range(problem.stride[i] as isize, || format!("stride[{i}]"), 1, 8)?;
198 }
199
200 Ok(())
201}
202
203pub fn calculate_lower_corner(padding: &[i32]) -> Vec<i32> {
204 padding.iter().map(|padding| -*padding).collect()
205}
206
207pub fn calculate_upper_corner(padding: &[i32], kernel_size: &[u32], dilation: &[u32]) -> Vec<i32> {
208 padding
209 .iter()
210 .zip(kernel_size)
211 .zip(dilation)
212 .map(|((padding, kernel_size), dilation)| {
213 *padding - (*kernel_size - 1) as i32 * *dilation as i32
214 })
215 .collect()
216}