1use bincode::de::Decoder;
2use bincode::enc::Encoder;
3use bincode::error::{DecodeError, EncodeError};
4use bincode::{Decode, Encode};
5use cu29::prelude::*;
6#[cfg(hardware)]
7use embedded_hal::i2c::I2c;
8#[cfg(hardware)]
9use linux_embedded_hal::{I2CError, I2cdev};
10use std::fmt::Display;
11use uom::si::acceleration::{meter_per_second_squared, standard_gravity};
12use uom::si::angle::{degree, radian};
13use uom::si::angular_velocity::{degree_per_second, radian_per_second};
14use uom::si::f32::Acceleration;
15use uom::si::f32::Angle;
16use uom::si::f32::AngularVelocity;
17use uom::si::f32::MagneticFluxDensity;
18use uom::si::magnetic_flux_density::{nanotesla, tesla};
19
20const I2C_BUS: &str = "/dev/i2c-9";
22#[allow(unused)]
23const WT901_I2C_ADDRESS: u8 = 0x50;
24
25#[allow(unused)]
26#[repr(u8)]
27#[derive(Debug, Clone, Copy)]
28enum Registers {
29 AccX = 0x34,
31 AccY = 0x35,
32 AccZ = 0x36,
33
34 GyroX = 0x37,
36 GyroY = 0x38,
37 GyroZ = 0x39,
38
39 MagX = 0x3A,
41 MagY = 0x3B,
42 MagZ = 0x3C,
43
44 Roll = 0x3D,
46 Pitch = 0x3E,
47 Yaw = 0x3F,
48}
49
50impl Registers {
51 #[allow(dead_code)]
52 fn offset(&self) -> usize {
53 ((*self as u8 - Registers::AccX as u8) * 2) as usize
54 }
55}
56
57use cu29_log_derive::debug;
58use cu29_traits::CuError;
59use serde::de::{Deserialize, Deserializer};
60use serde::ser::{Serialize, SerializeStruct, Serializer};
61use uom::fmt::DisplayStyle::Abbreviation;
62
63pub struct WT901 {
64 #[cfg(hardware)]
65 i2c: Box<dyn I2c<Error = I2CError>>,
66}
67
68#[derive(Default, Clone, Debug)]
69pub struct PositionalReadingsPayload {
70 acc_x: Acceleration,
71 acc_y: Acceleration,
72 acc_z: Acceleration,
73 gyro_x: AngularVelocity,
74 gyro_y: AngularVelocity,
75 gyro_z: AngularVelocity,
76 mag_x: MagneticFluxDensity,
77 mag_y: MagneticFluxDensity,
78 mag_z: MagneticFluxDensity,
79 roll: Angle,
80 pitch: Angle,
81 yaw: Angle,
82}
83
84impl Display for PositionalReadingsPayload {
85 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
86 let acc_style = Acceleration::format_args(standard_gravity, Abbreviation);
87 let angv_style = AngularVelocity::format_args(degree_per_second, Abbreviation);
88 let mag_style = MagneticFluxDensity::format_args(nanotesla, Abbreviation);
89 let angle_style = Angle::format_args(degree, Abbreviation);
90
91 write!(
92 f,
93 "acc_x: {}, acc_y: {}, acc_z: {}\n gyro_x: {}, gyro_y: {}, gyro_z: {}\nmag_x: {}, mag_y: {}, mag_z: {}\nroll: {}, pitch: {}, yaw: {}",
94 acc_style.with(self.acc_x),
95 acc_style.with(self.acc_y),
96 acc_style.with(self.acc_z),
97 angv_style.with(self.gyro_x),
98 angv_style.with(self.gyro_y),
99 angv_style.with(self.gyro_z),
100 mag_style.with(self.mag_x),
101 mag_style.with(self.mag_y),
102 mag_style.with(self.mag_z),
103 angle_style.with(self.roll),
104 angle_style.with(self.pitch),
105 angle_style.with(self.yaw)
106 )
107 }
108}
109
110impl Serialize for PositionalReadingsPayload {
111 fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
112 let mut s = serializer.serialize_struct("PositionalReadings", 12)?;
113 s.serialize_field("acc_x", &self.acc_x.value)?;
114 s.serialize_field("acc_y", &self.acc_y.value)?;
115 s.serialize_field("acc_z", &self.acc_z.value)?;
116 s.serialize_field("gyro_x", &self.gyro_x.value)?;
117 s.serialize_field("gyro_y", &self.gyro_y.value)?;
118 s.serialize_field("gyro_z", &self.gyro_z.value)?;
119 s.serialize_field("mag_x", &self.mag_x.value)?;
120 s.serialize_field("mag_y", &self.mag_y.value)?;
121 s.serialize_field("mag_z", &self.mag_z.value)?;
122 s.serialize_field("roll", &self.roll.value)?;
123 s.serialize_field("pitch", &self.pitch.value)?;
124 s.serialize_field("yaw", &self.yaw.value)?;
125 s.end()
126 }
127}
128
129impl<'de> Deserialize<'de> for PositionalReadingsPayload {
130 fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
131 let values = <[f32; 12]>::deserialize(deserializer)?;
132 Ok(PositionalReadingsPayload {
133 acc_x: Acceleration::new::<standard_gravity>(values[0]),
134 acc_y: Acceleration::new::<standard_gravity>(values[1]),
135 acc_z: Acceleration::new::<standard_gravity>(values[2]),
136 gyro_x: AngularVelocity::new::<degree_per_second>(values[3]),
137 gyro_y: AngularVelocity::new::<degree_per_second>(values[4]),
138 gyro_z: AngularVelocity::new::<degree_per_second>(values[5]),
139 mag_x: MagneticFluxDensity::new::<nanotesla>(values[6]),
140 mag_y: MagneticFluxDensity::new::<nanotesla>(values[7]),
141 mag_z: MagneticFluxDensity::new::<nanotesla>(values[8]),
142 roll: Angle::new::<degree>(values[9]),
143 pitch: Angle::new::<degree>(values[10]),
144 yaw: Angle::new::<degree>(values[11]),
145 })
146 }
147}
148
149impl Encode for PositionalReadingsPayload {
150 fn encode<E: Encoder>(&self, encoder: &mut E) -> Result<(), EncodeError> {
151 Encode::encode(&self.acc_x.value, encoder)?;
153 bincode::Encode::encode(&self.acc_y.value, encoder)?;
154 bincode::Encode::encode(&self.acc_z.value, encoder)?;
155 bincode::Encode::encode(&self.gyro_x.value, encoder)?;
156 bincode::Encode::encode(&self.gyro_y.value, encoder)?;
157 bincode::Encode::encode(&self.gyro_z.value, encoder)?;
158 bincode::Encode::encode(&self.mag_x.value, encoder)?;
159 bincode::Encode::encode(&self.mag_y.value, encoder)?;
160 bincode::Encode::encode(&self.mag_z.value, encoder)?;
161 bincode::Encode::encode(&self.roll.value, encoder)?;
162 bincode::Encode::encode(&self.pitch.value, encoder)?;
163 bincode::Encode::encode(&self.yaw.value, encoder)?;
164 Ok(())
165 }
166}
167
168impl Decode<()> for PositionalReadingsPayload {
169 fn decode<D: Decoder<Context = ()>>(decoder: &mut D) -> Result<Self, DecodeError> {
170 Ok(PositionalReadingsPayload {
171 acc_x: Acceleration::new::<meter_per_second_squared>(bincode::Decode::decode(decoder)?),
173 acc_y: Acceleration::new::<meter_per_second_squared>(bincode::Decode::decode(decoder)?),
174 acc_z: Acceleration::new::<meter_per_second_squared>(bincode::Decode::decode(decoder)?),
175 gyro_x: AngularVelocity::new::<radian_per_second>(bincode::Decode::decode(decoder)?),
176 gyro_y: AngularVelocity::new::<radian_per_second>(bincode::Decode::decode(decoder)?),
177 gyro_z: AngularVelocity::new::<radian_per_second>(bincode::Decode::decode(decoder)?),
178 mag_x: MagneticFluxDensity::new::<tesla>(bincode::Decode::decode(decoder)?),
179 mag_y: MagneticFluxDensity::new::<tesla>(bincode::Decode::decode(decoder)?),
180 mag_z: MagneticFluxDensity::new::<tesla>(bincode::Decode::decode(decoder)?),
181 roll: Angle::new::<radian>(bincode::Decode::decode(decoder)?),
182 pitch: Angle::new::<radian>(bincode::Decode::decode(decoder)?),
183 yaw: Angle::new::<radian>(bincode::Decode::decode(decoder)?),
184 })
185 }
186}
187
188#[allow(unused)]
190const REGISTER_SPAN_SIZE: usize = ((Registers::Yaw as u8 - Registers::AccX as u8) * 2 + 2) as usize;
191
192#[allow(unused)]
193impl WT901 {
194 fn bulk_position_read(&mut self, pr: &mut PositionalReadingsPayload) -> Result<(), CuError> {
195 debug!("Trying to read i2c");
196
197 #[cfg(hardware)]
198 {
199 let mut buf = [0u8; REGISTER_SPAN_SIZE];
200 self.i2c
201 .write_read(WT901_I2C_ADDRESS, &[Registers::AccX as u8], &mut buf)
202 .expect("Error reading WT901");
203 pr.acc_x = convert_acc(get_vec_i16(&buf, Registers::AccX.offset()));
204 pr.acc_y = convert_acc(get_vec_i16(&buf, Registers::AccY.offset()));
205 pr.acc_z = convert_acc(get_vec_i16(&buf, Registers::AccZ.offset()));
206 pr.gyro_x = convert_ang_vel(get_vec_i16(&buf, Registers::GyroX.offset()));
207 pr.gyro_y = convert_ang_vel(get_vec_i16(&buf, Registers::GyroY.offset()));
208 pr.gyro_z = convert_ang_vel(get_vec_i16(&buf, Registers::GyroZ.offset()));
209 pr.mag_x = convert_mag(get_vec_i16(&buf, Registers::MagX.offset()));
210 pr.mag_y = convert_mag(get_vec_i16(&buf, Registers::MagY.offset()));
211 pr.mag_z = convert_mag(get_vec_i16(&buf, Registers::MagZ.offset()));
212 pr.roll = convert_angle(get_vec_i16(&buf, Registers::Roll.offset()));
213 pr.pitch = convert_angle(get_vec_i16(&buf, Registers::Pitch.offset()));
214 pr.yaw = convert_angle(get_vec_i16(&buf, Registers::Yaw.offset()));
215 }
216 Ok(())
217 }
218}
219
220impl Freezable for WT901 {
221 }
223
224impl CuSrcTask for WT901 {
225 type Resources<'r> = ();
226 type Output<'m> = output_msg!(PositionalReadingsPayload);
227
228 fn new(_config: Option<&ComponentConfig>, _resources: Self::Resources<'_>) -> CuResult<Self>
229 where
230 Self: Sized,
231 {
232 debug!("Opening {}... ", I2C_BUS);
233 #[cfg(hardware)]
234 let i2cdev = I2cdev::new(I2C_BUS).unwrap();
235 debug!("{} opened.", I2C_BUS);
236 Ok(WT901 {
237 #[cfg(hardware)]
238 i2c: Box::new(i2cdev),
239 })
240 }
241
242 fn process(&mut self, _clock: &RobotClock, new_msg: &mut Self::Output<'_>) -> CuResult<()> {
243 let mut pos = PositionalReadingsPayload::default();
244 self.bulk_position_read(&mut pos)?;
245 new_msg.set_payload(pos);
246 Ok(())
247 }
248}
249
250#[inline]
252#[allow(dead_code)]
253fn get_vec_u16(buf: &[u8], offset: usize) -> u16 {
254 u16::from_le_bytes([buf[offset], buf[offset + 1]])
255}
256
257#[inline]
259#[allow(dead_code)]
260fn get_vec_i16(buf: &[u8], offset: usize) -> i16 {
261 i16::from_le_bytes([buf[offset], buf[offset + 1]])
262}
263
264#[allow(dead_code)]
265fn convert_acc(acc: i16) -> Acceleration {
266 let acc = acc as f32 / 32768.0 * 16.0;
268 Acceleration::new::<standard_gravity>(acc)
269}
270
271#[allow(dead_code)]
272fn convert_ang_vel(angv: i16) -> AngularVelocity {
273 let acc = (angv as f32 / 32768.0) * 2000.0;
275 AngularVelocity::new::<degree_per_second>(acc)
276}
277
278#[allow(dead_code)]
279fn convert_mag(mag: i16) -> MagneticFluxDensity {
280 let mag = (mag as f32 / 32768.0) * 8.333;
282 MagneticFluxDensity::new::<nanotesla>(mag)
283}
284
285#[allow(dead_code)]
286fn convert_angle(angle: i16) -> Angle {
287 let angle = angle as f32 / 32768.0 * 180.0;
288 Angle::new::<degree>(angle)
289}