ct_codecs/hex.rs
1use crate::error::*;
2use crate::{Decoder, Encoder};
3
4/// Hexadecimal encoder and decoder implementation.
5///
6/// Provides constant-time encoding and decoding of binary data to and from
7/// hexadecimal representation. The implementation uses only lowercase
8/// hexadecimal characters (0-9, a-f) for encoding.
9///
10/// # Security
11///
12/// All operations run in constant time relative to input length, making
13/// this implementation suitable for handling sensitive cryptographic data.
14///
15/// # Examples
16///
17/// ```
18/// use ct_codecs::{Hex, Encoder, Decoder};
19///
20/// let data = b"Hello";
21/// # let result =
22/// // Encode binary data to hex
23/// let encoded = Hex::encode_to_string(data)?;
24/// assert_eq!(encoded, "48656c6c6f");
25///
26/// // Decode hex back to binary
27/// let decoded = Hex::decode_to_vec(&encoded, None)?;
28/// assert_eq!(decoded, data);
29///
30/// // Working with preallocated buffers (useful for no_std)
31/// let mut hex_buf = [0u8; 10];
32/// let hex = Hex::encode(&mut hex_buf, data)?;
33/// assert_eq!(hex, b"48656c6c6f");
34///
35/// let mut bin_buf = [0u8; 5];
36/// let bin = Hex::decode(&mut bin_buf, hex, None)?;
37/// assert_eq!(bin, data);
38/// # Ok::<(), ct_codecs::Error>(())
39/// ```
40pub struct Hex;
41
42impl Encoder for Hex {
43 /// Calculates the encoded length for a hexadecimal representation.
44 ///
45 /// The encoded length is always twice the binary length, as each byte
46 /// is represented by two hexadecimal characters.
47 ///
48 /// # Arguments
49 ///
50 /// * `bin_len` - The length of the binary input in bytes
51 ///
52 /// # Returns
53 ///
54 /// * `Ok(usize)` - The required length for the encoded output
55 /// * `Err(Error::Overflow)` - If the calculation would overflow
56 #[inline]
57 fn encoded_len(bin_len: usize) -> Result<usize, Error> {
58 bin_len.checked_mul(2).ok_or(Error::Overflow)
59 }
60
61 /// Encodes binary data into a hexadecimal representation.
62 ///
63 /// The encoding is performed in constant time relative to the input length.
64 ///
65 /// # Arguments
66 ///
67 /// * `hex` - Mutable buffer to store the encoded output
68 /// * `bin` - Binary input data to encode
69 ///
70 /// # Returns
71 ///
72 /// * `Ok(&[u8])` - A slice of the encoded buffer containing the hex data
73 /// * `Err(Error::Overflow)` - If the output buffer is too small
74 fn encode<IN: AsRef<[u8]>>(hex: &mut [u8], bin: IN) -> Result<&[u8], Error> {
75 let bin = bin.as_ref();
76 let bin_len = bin.len();
77 let hex_maxlen = hex.len();
78 if hex_maxlen < bin_len.checked_shl(1).ok_or(Error::Overflow)? {
79 return Err(Error::Overflow);
80 }
81 for (i, v) in bin.iter().enumerate() {
82 let (b, c) = ((v >> 4) as u16, (v & 0xf) as u16);
83 let x = (((87 + c + (((c.wrapping_sub(10)) >> 8) & !38)) as u8) as u16) << 8
84 | ((87 + b + (((b.wrapping_sub(10)) >> 8) & !38)) as u8) as u16;
85 hex[i * 2] = x as u8;
86 hex[i * 2 + 1] = (x >> 8) as u8;
87 }
88 Ok(&hex[..bin_len * 2])
89 }
90}
91
92impl Decoder for Hex {
93 /// Decodes hexadecimal data back into its binary representation.
94 ///
95 /// The decoding is performed in constant time relative to the input length.
96 /// Both uppercase and lowercase hexadecimal characters are accepted.
97 ///
98 /// # Arguments
99 ///
100 /// * `bin` - Mutable buffer to store the decoded output
101 /// * `hex` - Hexadecimal input data to decode
102 /// * `ignore` - Optional set of characters to ignore during decoding
103 ///
104 /// # Returns
105 ///
106 /// * `Ok(&[u8])` - A slice of the binary buffer containing the decoded data
107 /// * `Err(Error::Overflow)` - If the output buffer is too small
108 /// * `Err(Error::InvalidInput)` - If the input contains invalid characters or has odd length
109 fn decode<'t, IN: AsRef<[u8]>>(
110 bin: &'t mut [u8],
111 hex: IN,
112 ignore: Option<&[u8]>,
113 ) -> Result<&'t [u8], Error> {
114 let hex = hex.as_ref();
115 let bin_maxlen = bin.len();
116 let mut bin_pos = 0;
117 let mut state = false;
118 let mut c_acc = 0;
119 for &c in hex {
120 let c_num = c ^ 48;
121 let c_num0 = ((c_num as u16).wrapping_sub(10) >> 8) as u8;
122 let c_alpha = (c & !32).wrapping_sub(55);
123 let c_alpha0 = (((c_alpha as u16).wrapping_sub(10)
124 ^ ((c_alpha as u16).wrapping_sub(16)))
125 >> 8) as u8;
126 if (c_num0 | c_alpha0) == 0 {
127 match ignore {
128 Some(ignore) if ignore.contains(&c) => continue,
129 _ => return Err(Error::InvalidInput),
130 };
131 }
132 let c_val = (c_num0 & c_num) | (c_alpha0 & c_alpha);
133 if bin_pos >= bin_maxlen {
134 return Err(Error::Overflow);
135 }
136 if !state {
137 c_acc = c_val << 4;
138 } else {
139 bin[bin_pos] = c_acc | c_val;
140 bin_pos += 1;
141 }
142 state = !state;
143 }
144 if state {
145 return Err(Error::InvalidInput);
146 }
147 Ok(&bin[..bin_pos])
148 }
149}
150
151#[cfg(feature = "std")]
152#[test]
153fn test_hex() {
154 let bin = [1u8, 5, 11, 15, 19, 131];
155 let hex = Hex::encode_to_string(bin).unwrap();
156 let expected = "01050b0f1383";
157 assert_eq!(hex, expected);
158 let bin2 = Hex::decode_to_vec(&hex, None).unwrap();
159 assert_eq!(bin, &bin2[..]);
160}
161
162#[test]
163fn test_hex_no_std() {
164 let bin = [1u8, 5, 11, 15, 19, 131];
165 let expected = "01050b0f1383";
166 let mut hex = [0u8; 12];
167 let hex = Hex::encode_to_str(&mut hex, bin).unwrap();
168 assert_eq!(&hex, &expected);
169 let mut bin2 = [0u8; 6];
170 let bin2 = Hex::decode(&mut bin2, hex, None).unwrap();
171 assert_eq!(bin, bin2);
172}