1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
use crossbeam_channel::{Receiver, Sender};
use csv::Reader;
use std::collections::HashSet;
use std::hash::Hasher;
use std::io::{Read, Seek};
use xxhash_rust::xxh3::{xxh3_128, Xxh3};
use crate::csv::Csv;
use crate::csv_hasher::CsvHasherExt;
use crate::csv_parse_result::{
CsvByteRecordWithHash, CsvLeftRightParseResult, CsvParseResult, CsvParseResultLeft,
CsvParseResultRight, Position, RecordHash, RecordHashWithPosition,
};
impl<R> CsvParseResult<CsvLeftRightParseResult<R>, R> for CsvParseResultLeft<R> {
#[inline]
fn new(record_hash: R) -> Self {
Self {
csv_left_right_parse_result: CsvLeftRightParseResult::Left(record_hash),
}
}
#[inline]
fn into_payload(self) -> CsvLeftRightParseResult<R> {
self.csv_left_right_parse_result
}
}
impl<R> CsvParseResult<CsvLeftRightParseResult<R>, R> for CsvParseResultRight<R> {
#[inline]
fn new(record_hash: R) -> Self {
Self {
csv_left_right_parse_result: CsvLeftRightParseResult::Right(record_hash),
}
}
#[inline]
fn into_payload(self) -> CsvLeftRightParseResult<R> {
self.csv_left_right_parse_result
}
}
pub(crate) struct CsvParserHasherLinesSender<T> {
sender: Sender<T>,
sender_total_lines: Sender<u64>,
}
impl CsvParserHasherLinesSender<CsvLeftRightParseResult<RecordHashWithPosition>> {
pub fn new(
sender: Sender<CsvLeftRightParseResult<RecordHashWithPosition>>,
sender_total_lines: Sender<u64>,
) -> Self {
Self {
sender,
sender_total_lines,
}
}
pub fn parse_and_hash<
R: Read + Seek + Send,
T: CsvParseResult<CsvLeftRightParseResult<RecordHashWithPosition>, RecordHashWithPosition>,
>(
&mut self,
csv: Csv<R>,
primary_key_columns: &HashSet<usize>,
) -> csv::Result<csv::Reader<R>> {
let mut csv_reader: Reader<R> = csv.into_csv_reader();
let mut csv_record = csv::ByteRecord::new();
// read first record in order to get the number of fields
if csv_reader.read_byte_record(&mut csv_record)? {
let csv_record_first = std::mem::take(&mut csv_record);
let fields_as_key: Vec<_> = primary_key_columns.iter().copied().collect();
// TODO: maybe use this in order to only hash fields that are values and not act
// as primary keys. We should probably only do this, if primary key field indices are
// contiguous, because otherwise we will have multiple calls to our hashing function,
// which could hurt performance.
// let num_of_fields = csv_record_first.len();
// let fields_as_value: Vec<_> = (0..num_of_fields)
// .filter(|x| !primary_key_columns.contains(x))
// .collect();
let record = csv_record_first;
let key_fields_iter = fields_as_key.iter().filter_map(|k_idx| record.get(*k_idx));
if key_fields_iter.peekable().peek().is_some() {
let key = record.hash_key_fields(fields_as_key.as_slice());
// TODO: don't hash all of it -> exclude the key fields (see below)
let hash_record = record.hash_record();
let pos = record.position().expect("a record position");
self.sender
.send(
T::new(RecordHashWithPosition::new(
key,
hash_record,
Position::new(pos.byte(), pos.line()),
))
.into_payload(),
)
.unwrap();
let mut line = 2;
while csv_reader.read_byte_record(&mut csv_record)? {
let key = csv_record.hash_key_fields(fields_as_key.as_slice());
let hash_record = csv_record.hash_record();
{
let pos = csv_record.position().expect("a record position");
self.sender
.send(
T::new(RecordHashWithPosition::new(
key,
hash_record,
Position::new(pos.byte(), pos.line()),
))
.into_payload(),
)
.unwrap();
}
line += 1;
}
self.sender_total_lines.send(line).unwrap();
}
} else {
self.sender_total_lines.send(0).unwrap();
}
Ok(csv_reader)
}
}
pub(crate) struct CsvParserHasherSender<T> {
sender: Sender<T>,
}
impl CsvParserHasherSender<CsvLeftRightParseResult<CsvByteRecordWithHash>> {
pub fn new(sender: Sender<CsvLeftRightParseResult<CsvByteRecordWithHash>>) -> Self {
Self { sender }
}
pub fn parse_and_hash<
R: Read + Send,
T: CsvParseResult<CsvLeftRightParseResult<CsvByteRecordWithHash>, CsvByteRecordWithHash>,
>(
&mut self,
csv: Csv<R>,
primary_key_columns: &HashSet<usize>,
receiver_csv_recycle: Receiver<csv::ByteRecord>,
) {
let mut csv_reader: Reader<R> = csv.into_csv_reader();
let mut csv_record = csv::ByteRecord::new();
// read first record in order to get the number of fields
match csv_reader.read_byte_record(&mut csv_record) {
Ok(true) => {
let record = std::mem::take(&mut csv_record);
let fields_as_key: Vec<_> = primary_key_columns.iter().copied().collect();
// TODO: maybe use this in order to only hash fields that are values and not act
// as primary keys. We should probably only do this, if primary key field indices are
// contiguous, because otherwise we will have multiple calls to our hashing function,
// which could hurt performance.
// let num_of_fields = record.len();
// let fields_as_value: Vec<_> = (0..num_of_fields)
// .filter(|x| !primary_key_columns.contains(x))
// .collect();
let mut hasher = Xxh3::new();
let mut key_fields_iter = fields_as_key
.iter()
.filter_map(|k_idx| record.get(*k_idx))
.peekable();
if key_fields_iter.peek().is_some() {
// TODO: try to do it with as few calls to `write` as possible (see below)
for key_field in key_fields_iter {
hasher.write(key_field);
}
let key = hasher.digest128();
// TODO: don't hash all of it -> exclude the key fields (see below)
let hash_record = xxh3_128(record.as_slice());
// we ignore any sending errors
let _ = self.sender.send(
T::new(CsvByteRecordWithHash::new(
Ok(record),
RecordHash::new(key, hash_record),
))
.into_payload(),
);
loop {
let mut csv_record = receiver_csv_recycle
.try_recv()
.unwrap_or_else(|_| csv::ByteRecord::new());
match csv_reader.read_byte_record(&mut csv_record) {
Ok(true) => {
hasher.reset();
let key_fields = fields_as_key
.iter()
.filter_map(|k_idx| csv_record.get(*k_idx));
// TODO: try to do it with as few calls to `write` as possible (see below)
for key_field in key_fields {
hasher.write(key_field);
}
let key = hasher.digest128();
// TODO: don't hash all of it -> exclude the key fields
// in order to still be efficient and do as few `write` calls as possible
// consider using `csv_record.range(...)` method
let hash_record = xxh3_128(csv_record.as_slice());
if self
.sender
.send(
T::new(CsvByteRecordWithHash::new(
Ok(csv_record),
RecordHash::new(key, hash_record),
))
.into_payload(),
)
.is_err()
{
// when the receiver is gone, it doesn't make sense to continue here
break;
}
}
Ok(false) => break,
Err(e) => {
if self
.sender
.send(
T::new(CsvByteRecordWithHash::new(
Err(e),
RecordHash::new(0, 0),
))
.into_payload(),
)
.is_err()
{
// when the receiver is gone, it doesn't make sense to continue here
break;
}
break;
}
}
}
}
}
Ok(false) => { /* Do nothing, we have reached EOF */ }
Err(e) => self
.sender
.send(
T::new(CsvByteRecordWithHash::new(Err(e), RecordHash::new(0, 0)))
.into_payload(),
)
.unwrap(),
}
}
}
#[derive(Debug)]
pub(crate) enum HashMapValue<T, TEq = T> {
Initial(u128, T),
Equal(TEq, TEq),
Modified(T, T),
}