1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
use core::fmt;

// BE ADVISED
//
// This may just be one of the more complicated CSV parsers you'll come across.
// The implementation never allocates and consists of both a functional NFA
// parser and a DFA parser. The DFA parser is the work horse and we could elide
// much of the work involved in making the NFA parser work, but the NFA parser
// is much easier to debug. The NFA parser is tested alongside the DFA parser,
// so they should never be out of sync.
//
// The basic structure of the implementation is to encode the NFA parser as
// an explicit state machine in code. The DFA is then generated by populating
// a transition table on the stack by exhaustively enumerating all possible
// states on all possible inputs (this is possible because the number of states
// and the number of inputs is very small).
//
// Note that some pieces of the NFA parser (such as the NFA state machine) are
// required. In particular, the translation from the NFA to the DFA depends on
// the configuration of the CSV parser as given by the caller, and indeed, this
// is one of the key performance benefits of the DFA: it doesn't have any
// overhead (other than a bigger transition table) associated with the number
// of configuration options.
//
// ADVICE FOR HACKERS
//
// This code is too clever for its own good. As such, changes to some parts of
// the code may have a non-obvious impact on other parts. This is mostly
// motivated by trying to keep the DFA transition table as small as possible,
// since it is stored on the stack. Here are some tips that may save you some
// time:
//
// * If you add a new NFA state, then you also need to consider how it impacts
//   the DFA. If all of the incoming transitions into an NFA state are
//   epsilon transitions, then it probably isn't materialized in the DFA.
//   If the NFA state indicates that a field or a record has been parsed, then
//   it should be considered final. Let the comments in `NfaState` be your
//   guide.
// * If you add a new configuration knob to the parser, then you may need to
//   modify the `TRANS_CLASSES` constant below. The `TRANS_CLASSES` constant
//   indicates the total number of discriminating bytes in the DFA. And if you
//   modify `TRANS_CLASSES`, you probably also need to modify `build_dfa` to
//   add a new class. For example, in order to add parsing support for
//   comments, I bumped `TRANS_CLASSES` from `6` to `7` and added the comment
//   byte (if one exists) to the list of classes in `build_dfa`.
// * The special DFA start state doubles as the final state once all input
//   from the caller has been exhausted. We must be careful to guard this
//   case analysis on whether the input is actually exhausted, since the start
//   state is an otherwise valid state.

/// A record terminator.
///
/// Use this to specify the record terminator while parsing CSV. The default is
/// CRLF, which treats `\r`, `\n` or `\r\n` as a single record terminator.
#[derive(Clone, Copy, Debug)]
pub enum Terminator {
    /// Parses `\r`, `\n` or `\r\n` as a single record terminator.
    CRLF,
    /// Parses the byte given as a record terminator.
    Any(u8),
}

impl Terminator {
    /// Checks whether the terminator is set to CRLF.
    fn is_crlf(&self) -> bool {
        match *self {
            Terminator::CRLF => true,
            Terminator::Any(_) => false,
        }
    }
}

impl Default for Terminator {
    fn default() -> Terminator {
        Terminator::CRLF
    }
}

impl PartialEq<u8> for Terminator {
    #[inline]
    fn eq(&self, &other: &u8) -> bool {
        match *self {
            Terminator::CRLF => other == b'\r' || other == b'\n',
            Terminator::Any(b) => other == b,
        }
    }
}

/// A pull based CSV reader.
///
/// This reader parses CSV data using a finite state machine. Callers can
/// extract parsed data incrementally using one of the `read` methods.
///
/// Note that this CSV reader is somewhat encoding agnostic. The source data
/// needs to be at least ASCII compatible. There is no support for specifying
/// the full gamut of Unicode delimiters/terminators/quotes/escapes. Instead,
/// any byte can be used, although callers probably want to stick to the ASCII
/// subset (`<= 0x7F`).
///
/// # Usage
///
/// A reader has two different ways to read CSV data, each with their own
/// trade offs.
///
/// * `read_field` - Copies a single CSV field into an output buffer while
///   unescaping quotes. This is simple to use and doesn't require storing an
///   entire record contiguously in memory, but it is slower.
/// * `read_record` - Copies an entire CSV record into an output buffer while
///   unescaping quotes. The ending positions of each field are copied into
///   an additional buffer. This is harder to use and requires larger output
///   buffers, but it is faster than `read_field` since it amortizes more
///   costs.
///
/// # RFC 4180
///
/// [RFC 4180](https://tools.ietf.org/html/rfc4180)
/// is the closest thing to a specification for CSV data. Unfortunately,
/// CSV data that is seen in the wild can vary significantly. Often, the CSV
/// data is outright invalid. Instead of fixing the producers of bad CSV data,
/// we have seen fit to make consumers much more flexible in what they accept.
/// This reader continues that tradition, and therefore, isn't technically
/// compliant with RFC 4180. In particular, this reader will never return an
/// error and will always find *a* parse.
///
/// Here are some detailed differences from RFC 4180:
///
/// * CRLF, LF and CR are each treated as a single record terminator by
///   default.
/// * Records are permitted to be of varying length.
/// * Empty lines (that do not include other whitespace) are ignored.
#[derive(Clone, Debug)]
pub struct Reader {
    /// A table-based DFA for parsing CSV.
    dfa: Dfa,
    /// The current DFA state, if the DFA is used.
    dfa_state: DfaState,
    /// The current NFA state, if the NFA is used.
    nfa_state: NfaState,
    /// The delimiter that separates fields.
    delimiter: u8,
    /// The terminator that separates records.
    term: Terminator,
    /// The quotation byte.
    quote: u8,
    /// Whether to recognize escaped quotes.
    escape: Option<u8>,
    /// Whether to recognized doubled quotes.
    double_quote: bool,
    /// If enabled, lines beginning with this byte are ignored.
    comment: Option<u8>,
    /// Whether to use the NFA for parsing.
    ///
    /// Generally this is for debugging. There's otherwise no good reason
    /// to avoid the DFA.
    use_nfa: bool,
    /// The current line number.
    line: u64,
    /// The current position in the output buffer when reading a record.
    output_pos: usize,
}

impl Default for Reader {
    fn default() -> Reader {
        Reader {
            dfa: Dfa::new(),
            dfa_state: DfaState::start(),
            nfa_state: NfaState::StartRecord,
            delimiter: b',',
            term: Terminator::default(),
            quote: b'"',
            escape: None,
            double_quote: true,
            comment: None,
            use_nfa: false,
            line: 1,
            output_pos: 0,
        }
    }
}

/// Builds a CSV reader with various configuration knobs.
///
/// This builder can be used to tweak the field delimiter, record terminator
/// and more for parsing CSV. Once a CSV `Reader` is built, its configuration
/// cannot be changed.
#[derive(Debug, Default)]
pub struct ReaderBuilder {
    rdr: Reader,
}

impl ReaderBuilder {
    /// Create a new builder.
    pub fn new() -> ReaderBuilder {
        ReaderBuilder::default()
    }

    /// Build a CSV parser from this configuration.
    pub fn build(&self) -> Reader {
        let mut rdr = self.rdr.clone();
        rdr.build_dfa();
        rdr
    }

    /// The field delimiter to use when parsing CSV.
    ///
    /// The default is `b','`.
    pub fn delimiter(&mut self, delimiter: u8) -> &mut ReaderBuilder {
        self.rdr.delimiter = delimiter;
        self
    }

    /// The record terminator to use when parsing CSV.
    ///
    /// A record terminator can be any single byte. The default is a special
    /// value, `Terminator::CRLF`, which treats any occurrence of `\r`, `\n`
    /// or `\r\n` as a single record terminator.
    pub fn terminator(
        &mut self,
        term: Terminator,
    ) -> &mut ReaderBuilder {
        self.rdr.term = term;
        self
    }

    /// The quote character to use when parsing CSV.
    ///
    /// The default is `b'"'`.
    pub fn quote(&mut self, quote: u8) -> &mut ReaderBuilder {
        self.rdr.quote = quote;
        self
    }

    /// The escape character to use when parsing CSV.
    ///
    /// In some variants of CSV, quotes are escaped using a special escape
    /// character like `\` (instead of escaping quotes by doubling them).
    ///
    /// By default, recognizing these idiosyncratic escapes is disabled.
    pub fn escape(&mut self, escape: Option<u8>) -> &mut ReaderBuilder {
        self.rdr.escape = escape;
        self
    }

    /// Enable double quote escapes.
    ///
    /// This is enabled by default, but it may be disabled. When disabled,
    /// doubled quotes are not interpreted as escapes.
    pub fn double_quote(&mut self, yes: bool) -> &mut ReaderBuilder {
        self.rdr.double_quote = yes;
        self
    }

    /// The comment character to use when parsing CSV.
    ///
    /// If the start of a record begins with the byte given here, then that
    /// line is ignored by the CSV parser.
    ///
    /// This is disabled by default.
    pub fn comment(&mut self, comment: Option<u8>) -> &mut ReaderBuilder {
        self.rdr.comment = comment;
        self
    }

    /// A convenience method for specifying a configuration to read ASCII
    /// delimited text.
    ///
    /// This sets the delimiter and record terminator to the ASCII unit
    /// separator (`\x1F`) and record separator (`\x1E`), respectively.
    pub fn ascii(&mut self) -> &mut ReaderBuilder {
        self.delimiter(b'\x1F').terminator(Terminator::Any(b'\x1E'))
    }

    /// Enable or disable the NFA for parsing CSV.
    ///
    /// This is intended to be a debug option useful for debugging. The NFA
    /// is always slower than the DFA.
    #[doc(hidden)]
    pub fn nfa(&mut self, yes: bool) -> &mut ReaderBuilder {
        self.rdr.use_nfa = yes;
        self
    }
}

/// The result of parsing at most one field from CSV data.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ReadFieldResult {
    /// The caller provided input was exhausted before the end of a field or
    /// record was found.
    InputEmpty,
    /// The caller provided output buffer was filled before an entire field
    /// could be written to it.
    OutputFull,
    /// The end of a field was found.
    ///
    /// Note that when `record_end` is true, then the end of this field also
    /// corresponds to the end of a record.
    Field {
        /// Whether this was the last field in a record or not.
        record_end: bool,
    },
    /// All CSV data has been read.
    ///
    /// This state can only be returned when an empty input buffer is provided
    /// by the caller.
    End,
}

impl ReadFieldResult {
    fn from_nfa(
        state: NfaState,
        inpdone: bool,
        outdone: bool,
    ) -> ReadFieldResult {
        match state {
            NfaState::End => ReadFieldResult::End,
            NfaState::EndRecord | NfaState::CRLF => {
                ReadFieldResult::Field { record_end: true }
            }
            NfaState::EndFieldDelim => {
                ReadFieldResult::Field { record_end: false }
            }
            _ => {
                assert!(!state.is_field_final());
                if !inpdone && outdone {
                    ReadFieldResult::OutputFull
                } else {
                    ReadFieldResult::InputEmpty
                }
            }
        }
    }
}

/// The result of parsing at most one field from CSV data while ignoring the
/// output.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ReadFieldNoCopyResult {
    /// The caller provided input was exhausted before the end of a field or
    /// record was found.
    InputEmpty,
    /// The end of a field was found.
    ///
    /// Note that when `record_end` is true, then the end of this field also
    /// corresponds to the end of a record.
    Field {
        /// Whether this was the last field in a record or not.
        record_end: bool,
    },
    /// All CSV data has been read.
    ///
    /// This state can only be returned when an empty input buffer is provided
    /// by the caller.
    End,
}

/// The result of parsing at most one record from CSV data.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ReadRecordResult {
    /// The caller provided input was exhausted before the end of a record was
    /// found.
    InputEmpty,
    /// The caller provided output buffer was filled before an entire field
    /// could be written to it.
    OutputFull,
    /// The caller provided output buffer of field end poisitions was filled
    /// before the next field could be parsed.
    OutputEndsFull,
    /// The end of a record was found.
    Record,
    /// All CSV data has been read.
    ///
    /// This state can only be returned when an empty input buffer is provided
    /// by the caller.
    End,
}

impl ReadRecordResult {
    fn is_record(&self) -> bool {
        *self == ReadRecordResult::Record
    }

    fn from_nfa(
        state: NfaState,
        inpdone: bool,
        outdone: bool,
        endsdone: bool,
    ) -> ReadRecordResult {
        match state {
            NfaState::End => ReadRecordResult::End,
            NfaState::EndRecord | NfaState::CRLF => ReadRecordResult::Record,
            _ => {
                assert!(!state.is_record_final());
                if !inpdone && outdone {
                    ReadRecordResult::OutputFull
                } else if !inpdone && endsdone {
                    ReadRecordResult::OutputEndsFull
                } else {
                    ReadRecordResult::InputEmpty
                }
            }
        }
    }
}

/// The result of parsing at most one record from CSV data while ignoring
/// output.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ReadRecordNoCopyResult {
    /// The caller provided input was exhausted before the end of a record was
    /// found.
    InputEmpty,
    /// The end of a record was found.
    Record,
    /// All CSV data has been read.
    ///
    /// This state can only be returned when an empty input buffer is provided
    /// by the caller.
    End,
}

/// An NFA state is a state that can be visited in the NFA parser.
///
/// Given the simplicity of the machine, a subset of NFA states double as DFA
/// states. NFA states that only have incoming epsilon transitions are
/// optimized out when converting the machine to a DFA.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum NfaState {
    // These states aren't used in the DFA, so we
    // assign them meaningless numbers.
    EndFieldTerm = 200,
    InRecordTerm = 201,
    End = 202,

    // All states below are DFA states.
    StartRecord = 0,
    StartField = 1,
    InField = 2,
    InQuotedField = 3,
    InEscapedQuote = 4,
    InDoubleEscapedQuote = 5,
    InComment = 6,
    // All states below are "final field" states.
    // Namely, they indicate that a field has been parsed.
    EndFieldDelim = 7,
    // All states below are "final record" states.
    // Namely, they indicate that a record has been parsed.
    EndRecord = 8,
    CRLF = 9,
}

/// A list of NFA states that have an explicit representation in the DFA.
const NFA_STATES: &'static [NfaState] = &[
    NfaState::StartRecord,
    NfaState::StartField,
    NfaState::EndFieldDelim,
    NfaState::InField,
    NfaState::InQuotedField,
    NfaState::InEscapedQuote,
    NfaState::InDoubleEscapedQuote,
    NfaState::InComment,
    NfaState::EndRecord,
    NfaState::CRLF,
];

impl NfaState {
    /// Returns true if this state indicates that a field has been parsed.
    fn is_field_final(&self) -> bool {
        match *self {
            NfaState::End
            | NfaState::EndRecord
            | NfaState::CRLF
            | NfaState::EndFieldDelim => true,
            _ => false,
        }
    }

    /// Returns true if this state indicates that a record has been parsed.
    fn is_record_final(&self) -> bool {
        match *self {
            NfaState::End
            | NfaState::EndRecord
            | NfaState::CRLF => true,
            _ => false,
        }
    }
}

impl Reader {
    /// Create a new CSV reader with a default parser configuration.
    pub fn new() -> Reader {
        ReaderBuilder::new().build()
    }

    /// Reset the parser such that it behaves as if it had never been used.
    ///
    /// This may be useful when reading CSV data in a random access pattern.
    pub fn reset(&mut self) {
        self.dfa_state = self.dfa.new_state(NfaState::StartRecord);
        self.nfa_state = NfaState::StartRecord;
        self.line = 1;
    }

    /// Return the current line number as measured by the number of occurrences
    /// of `\n`.
    ///
    /// Line numbers starts at `1` and are reset when `reset` is called.
    pub fn line(&self) -> u64 {
        self.line
    }

    /// Set the line number.
    ///
    /// This is useful after a call to `reset` where the caller knows the
    /// line number from some additional context.
    pub fn set_line(&mut self, line: u64) {
        self.line = line;
    }

    /// Parse a single CSV field in `input` and copy field data to `output`.
    ///
    /// This routine requires a caller provided buffer of CSV data as the
    /// `input` and a caller provided buffer, `output`, in which to store field
    /// data extracted from `input`. The field data copied to `output` will
    /// have its quotes unescaped.
    ///
    /// Calling this routine parses at most a single field and returns
    /// three values indicating the state of the parser. The first value, a
    /// `ReadFieldResult`, tells the caller what to do next. For example, if
    /// the entire input was read or if the output buffer was filled before
    /// a full field had been read, then `ReadFieldResult::InputEmpty` or
    /// `ReadFieldResult::OutputFull` is returned, respectively. See the
    /// documentation for `ReadFieldResult` for more details.
    ///
    /// The other two values returned correspond to the number of bytes
    /// read from `input` and written to `output`, respectively.
    ///
    /// # Termination
    ///
    /// This reader interprets an empty `input` buffer as an indication that
    /// there is no CSV data left to read. Namely, when the caller has
    /// exhausted all CSV data, the caller should continue to call `read` with
    /// an empty input buffer until `ReadFieldResult::End` is returned.
    ///
    /// # Errors
    ///
    /// This CSV reader can never return an error. Instead, it prefers *a*
    /// parse over *no* parse.
    pub fn read_field(
        &mut self,
        input: &[u8],
        output: &mut [u8],
    ) -> (ReadFieldResult, usize, usize) {
        if self.use_nfa {
            self.read_field_nfa(input, output)
        } else {
            self.read_field_dfa(input, output)
        }
    }

    /// Parse a single CSV record in `input` and copy each field contiguously
    /// to `output`, with the end position of each field written to `ends`.
    ///
    /// **NOTE**: This method is more cumbersome to use than `read_field`, but
    /// it can be faster since it amortizes more work.
    ///
    /// This routine requires a caller provided buffer of CSV data as the
    /// `input` and two caller provided buffers to store the unescaped field
    /// data (`output`) and the end position of each field in the record
    /// (`fields`).
    ///
    /// Calling this routine parses at most a single record and returns four
    /// values indicating the state of the parser. The first value, a
    /// `ReadRecordResult`, tells the caller what to do next. For example, if
    /// the entire input was read or if the output buffer was filled before a
    /// full field had been read, then `ReadRecordResult::InputEmpty` or
    /// `ReadFieldResult::OutputFull` is returned, respectively. Similarly, if
    /// the `ends` buffer is full, then `ReadFieldResult::OutputEndsFull` is
    /// returned. See the documentation for `ReadRecordResult` for more
    /// details.
    ///
    /// The other three values correspond to the number of bytes read from
    /// `input`, the number of bytes written to `output` and the number of
    /// end positions written to `ends`, respectively.
    ///
    /// The end positions written to `ends` are constructed as if there was
    /// a single contiguous buffer in memory containing the entire row, even
    /// if `ReadRecordResult::OutputFull` was returned in the middle of reading
    /// a row.
    ///
    /// # Termination
    ///
    /// This reader interprets an empty `input` buffer as an indication that
    /// there is no CSV data left to read. Namely, when the caller has
    /// exhausted all CSV data, the caller should continue to call `read` with
    /// an empty input buffer until `ReadRecordResult::End` is returned.
    ///
    /// # Errors
    ///
    /// This CSV reader can never return an error. Instead, it prefers *a*
    /// parse over *no* parse.
    pub fn read_record(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        ends: &mut [usize],
    ) -> (ReadRecordResult, usize, usize, usize) {
        if self.use_nfa {
            self.read_record_nfa(input, output, ends)
        } else {
            self.read_record_dfa(input, output, ends)
        }
    }

    #[inline(always)]
    fn read_record_dfa(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        ends: &mut [usize],
    ) -> (ReadRecordResult, usize, usize, usize) {
        if input.is_empty() {
            let s = self.transition_final_dfa(self.dfa_state);
            let res = self.dfa.new_read_record_result(
                s, true, false, false, false);
            // This part is a little tricky. When reading the final record,
            // the last result the caller will get is an InputEmpty, and while
            // they'll have everything they need in `output`, they'll be
            // missing the final end position of the final field in `ends`.
            // We insert that here, but we must take care to handle the case
            // where `ends` doesn't have enough space. If it doesn't have
            // enough space, then we also can't transition to the next state.
            return match res {
                ReadRecordResult::Record => {
                    if ends.is_empty() {
                        return (ReadRecordResult::OutputEndsFull, 0, 0, 0);
                    }
                    self.dfa_state = s;
                    ends[0] = self.output_pos;
                    self.output_pos = 0;
                    (res, 0, 0, 1)
                }
                _ => {
                    self.dfa_state = s;
                    (res, 0, 0, 0)
                }
            };
        }
        if output.is_empty() {
            return (ReadRecordResult::OutputFull, 0, 0, 0);
        }
        if ends.is_empty() {
            return (ReadRecordResult::OutputEndsFull, 0, 0, 0);
        }
        let (mut nin, mut nout, mut nend) = (0, 0, 0);
        let mut state = self.dfa_state;
        while nin < input.len() && nout < output.len() && nend < ends.len() {
            let (s, has_out) = self.dfa.get_output(state, input[nin]);
            self.line += (input[nin] == b'\n') as u64;
            state = s;
            if has_out {
                output[nout] = input[nin];
                nout += 1;
            }
            nin += 1;
            if state >= self.dfa.final_field {
                ends[nend] = self.output_pos + nout;
                nend += 1;
                if state > self.dfa.final_field {
                    break;
                }
            }
            if state == self.dfa.in_field || state == self.dfa.in_quoted {
                self.dfa.classes.scan_and_copy(
                    input, &mut nin, output, &mut nout);
            }
        }
        let res = self.dfa.new_read_record_result(
            state, false,
            nin >= input.len(),
            nout >= output.len(),
            nend >= ends.len());
        self.dfa_state = state;
        if res.is_record() {
            self.output_pos = 0;
        } else {
            self.output_pos += nout;
        }
        (res, nin, nout, nend)
    }

    #[inline(always)]
    fn read_field_dfa(
        &mut self,
        input: &[u8],
        output: &mut [u8],
    ) -> (ReadFieldResult, usize, usize) {
        if input.is_empty() {
            self.dfa_state = self.transition_final_dfa(self.dfa_state);
            let res = self.dfa.new_read_field_result(
                self.dfa_state, true, false, false);
            return (res, 0, 0);
        }
        if output.is_empty() {
            return (ReadFieldResult::OutputFull, 0, 0);
        }
        let (mut nin, mut nout) = (0, 0);
        let mut state = self.dfa_state;
        while nin < input.len() && nout < output.len() {
            let b = input[nin];
            self.line += (b == b'\n') as u64;
            let (s, has_out) = self.dfa.get_output(state, b);
            state = s;
            if has_out {
                output[nout] = b;
                nout += 1;
            }
            nin += 1;
            if state >= self.dfa.final_field {
                break;
            }
        }
        let res = self.dfa.new_read_field_result(
            state, false, nin >= input.len(), nout >= output.len());
        self.dfa_state = state;
        (res, nin, nout)
    }

    /// Perform the final state transition, i.e., when the caller indicates
    /// that the input has been exhausted.
    fn transition_final_dfa(&self, state: DfaState) -> DfaState {
        // If we''ve already emitted a record or think we're ready to start
        // parsing a new record, then we should sink into the final state
        // and never move from there. (pro-tip: the start state doubles as
        // the final state!)
        if state >= self.dfa.final_record || state.is_start() {
            self.dfa.new_state_final_end()
        } else {
            self.dfa.new_state_final_record()
        }
    }

    /// Write the transition tables for the DFA based on this parser's
    /// configuration.
    fn build_dfa(&mut self) {
        // A naive DFA transition table has
        // `cells = (# number of states) * (# size of alphabet)`. While we
        // could get away with that, the table would have `10 * 256 = 2560`
        // entries. Even worse, in order to avoid a multiplication instruction
        // when computing the next transition, we store the starting index of
        // each state's row, which would not be representible in a single byte.
        // So we'd need a `u16`, which doubles our transition table size to
        // ~5KB. This is a lot to put on the stack, even though it probably
        // fits in the L1 cache of most modern CPUs.
        //
        // To avoid this, we note that while our "true" alphabet
        // has 256 distinct possibilities, the DFA itself is only
        // discriminatory on a very small subset of that alphabet. For
        // example, assuming neither `a` nor `b` are set as special
        // quote/comment/escape/delimiter/terminator bytes, they are otherwise
        // indistinguishable to the DFA, so it would be OK to treat them as
        // if they were equivalent. That is, they are in the same equivalence
        // class.
        //
        // As it turns out, using this logic, we can shrink our effective
        // alphabet down to 7 equivalence classes:
        //
        //   1. The field delimiter.
        //   2. The record terminator.
        //   3. If the record terminator is CRLF, then CR and LF are
        //      distinct equivalence classes.
        //   4. The quote byte.
        //   5. The escape byte.
        //   6. The comment byte.
        //   7. Everything else.
        //
        // We add those equivalence classes here. If more configuration knobs
        // are added to the parser with more discriminating bytes, then this
        // logic will need to be adjusted further.
        //
        // Even though this requires an extra bit of indirection when computing
        // the next transition, microbenchmarks say that it doesn't make much
        // of a difference. Perhaps because everything fits into the L1 cache.
        self.dfa.classes.add(self.delimiter);
        self.dfa.classes.add(self.quote);
        if let Some(escape) = self.escape {
            self.dfa.classes.add(escape);
        }
        if let Some(comment) = self.comment {
            self.dfa.classes.add(comment);
        }
        match self.term {
            Terminator::Any(b) => self.dfa.classes.add(b),
            Terminator::CRLF => {
                self.dfa.classes.add(b'\r');
                self.dfa.classes.add(b'\n');
            }
        }
        // Build the DFA transition table by computing the DFA state for all
        // possible combinations of state and input byte.
        for &state in NFA_STATES {
            for c in (0..256).map(|c| c as u8) {
                let (mut nextstate, mut inp, mut out) = (state, false, false);
                // Consume NFA states until we hit a non-epsilon transition.
                while !inp && nextstate != NfaState::End {
                    let (s, i, o) = self.transition_nfa(nextstate, c);
                    assert!(i || !o);
                    nextstate = s;
                    inp = i;
                    // If any state we visit emits an output byte, then mark
                    // this state as emitting output.
                    out = out || o;
                }
                let from = self.dfa.new_state(state);
                let to = self.dfa.new_state(nextstate);
                self.dfa.set(from, c, to, out);
            }
        }
        self.dfa_state = self.dfa.new_state(NfaState::StartRecord);
        self.dfa.finish();
    }

    // The NFA implementation follows. The transition_final_nfa and
    // transition_nfa methods are required for the DFA to operate. The
    // rest are included for completeness (and debugging). Note that this
    // NFA implementation is included in most of the CSV parser tests below.

    #[inline(always)]
    fn read_record_nfa(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        ends: &mut [usize],
    ) -> (ReadRecordResult, usize, usize, usize) {
        if input.is_empty() {
            let s = self.transition_final_nfa(self.nfa_state);
            let res = ReadRecordResult::from_nfa(s, false, false, false);
            return match res {
                ReadRecordResult::Record => {
                    if ends.is_empty() {
                        return (ReadRecordResult::OutputEndsFull, 0, 0, 0);
                    }
                    self.nfa_state = s;
                    ends[0] = self.output_pos;
                    self.output_pos = 0;
                    (res, 0, 0, 1)
                }
                _ => {
                    self.nfa_state = s;
                    (res, 0, 0, 0)
                }
            };
        }
        if output.is_empty() {
            return (ReadRecordResult::OutputFull, 0, 0, 0);
        }
        if ends.is_empty() {
            return (ReadRecordResult::OutputEndsFull, 0, 0, 0);
        }
        let (mut nin, mut nout, mut nend) = (0, self.output_pos, 0);
        let mut state = self.nfa_state;
        while nin < input.len() && nout < output.len() && nend < ends.len() {
            let (s, i, o) = self.transition_nfa(state, input[nin]);
            debug_assert!(i || !o);
            if o {
                output[nout] = input[nin];
                nout += 1;
            }
            if i {
                nin += 1;
            }
            state = s;
            if state.is_field_final() {
                ends[nend] = nout;
                nend += 1;
                if state != NfaState::EndFieldDelim {
                    break;
                }
            }
        }
        let res = ReadRecordResult::from_nfa(
            state,
            nin >= input.len(),
            nout >= output.len(),
            nend >= ends.len());
        self.nfa_state = state;
        self.output_pos = if res.is_record() { 0 } else { nout };
        (res, nin, nout, nend)
    }

    #[inline(always)]
    fn read_field_nfa(
        &mut self,
        input: &[u8],
        output: &mut [u8],
    ) -> (ReadFieldResult, usize, usize) {
        if input.is_empty() {
            self.nfa_state = self.transition_final_nfa(self.nfa_state);
            let res = ReadFieldResult::from_nfa(self.nfa_state, false, false);
            return (res, 0, 0);
        }
        if output.is_empty() {
            // If the output buffer is empty, then we can never make progress,
            // so just quit now.
            return (ReadFieldResult::OutputFull, 0, 0);
        }
        let (mut nin, mut nout) = (0, 0);
        let mut state = self.nfa_state;
        while nin < input.len() && nout < output.len() {
            let (s, i, o) = self.transition_nfa(state, input[nin]);
            debug_assert!(i || !o);
            if o {
                output[nout] = input[nin];
                nout += 1;
            }
            if i {
                nin += 1;
            }
            state = s;
            if state.is_field_final() {
                break;
            }
        }
        let res = ReadFieldResult::from_nfa(
            state, nin >= input.len(), nout >= output.len());
        self.nfa_state = state;
        (res, nin, nout)
    }

    /// Compute the final NFA transition after all caller-provided input has
    /// been exhausted.
    #[inline(always)]
    fn transition_final_nfa(&self, state: NfaState) -> NfaState {
        use self::NfaState::*;
        match state {
            End
            | StartRecord
            | EndRecord
            | InComment
            | CRLF => End,
            StartField
            | EndFieldDelim
            | EndFieldTerm
            | InField
            | InQuotedField
            | InEscapedQuote
            | InDoubleEscapedQuote
            | InRecordTerm => EndRecord,
        }
    }

    /// Compute the next NFA state given the current NFA state and the current
    /// input byte.
    ///
    /// This returns the next NFA state along with two booleans that indicate
    /// whether an input byte was consumed (i.e., a non-epsilon transition)
    /// and whether the input byte should be copied to a caller provided output
    /// buffer. For example, seeing a field delimiter will consume an input
    /// byte but should not copy it to the output buffer.
    ///
    /// It is illegal for this to emit an output byte without consuming the
    /// input byte.
    #[inline(always)]
    fn transition_nfa(
        &self,
        state: NfaState,
        c: u8,
    ) -> (NfaState, bool, bool) {
        use self::NfaState::*;
        match state {
            End => (End, false, false),
            StartRecord => {
                if self.term == c {
                    (StartRecord, true, false)
                } else {
                    (StartField, false, false)
                }
            }
            EndRecord => {
                (StartRecord, false, false)
            }
            StartField => {
                if self.quote == c {
                    (InQuotedField, true, false)
                } else if self.delimiter == c {
                    (EndFieldDelim, true, false)
                } else if self.term == c {
                    (EndFieldTerm, false, false)
                } else if self.comment == Some(c) {
                    (InComment, true, false)
                } else {
                    (InField, true, true)
                }
            }
            EndFieldDelim => {
                (StartField, false, false)
            }
            EndFieldTerm => {
                (InRecordTerm, false, false)
            }
            InField => {
                if self.delimiter == c {
                    (EndFieldDelim, true, false)
                } else if self.term == c {
                    (EndFieldTerm, false, false)
                } else {
                    (InField, true, true)
                }
            }
            InQuotedField => {
                if self.quote == c {
                    (InDoubleEscapedQuote, true, false)
                } else if self.escape == Some(c) {
                    (InEscapedQuote, true, false)
                } else {
                    (InQuotedField, true, true)
                }
            }
            InEscapedQuote => {
                (InQuotedField, true, true)
            }
            InDoubleEscapedQuote => {
                if self.double_quote && self.quote == c {
                    (InQuotedField, true, true)
                } else if self.delimiter == c {
                    (EndFieldDelim, true, false)
                } else if self.term == c {
                    (EndFieldTerm, false, false)
                } else {
                    (InField, true, true)
                }
            }
            InComment => {
                if b'\n' == c {
                    (StartRecord, true, false)
                } else {
                    (InComment, true, false)
                }
            }
            InRecordTerm => {
                if self.term.is_crlf() && b'\r' == c {
                    (CRLF, true, false)
                } else {
                    (EndRecord, true, false)
                }
            }
            CRLF => {
                if b'\n' == c {
                    (StartRecord, true, false)
                } else {
                    (StartRecord, false, false)
                }
            }
        }
    }
}

/// The number of slots in the DFA transition table.
///
/// This number is computed by multiplying the maximum number of transition
/// classes (7) by the total number of NFA states that are used in the DFA
/// (10).
///
/// The number of transition classes is determined by an equivalence class of
/// bytes, where every byte in the same equivalence classes is
/// indistinguishable from any other byte with respect to the DFA. For example,
/// if neither `a` nor `b` are specifed as a delimiter/quote/terminator/escape,
/// then the DFA will never discriminate between `a` or `b`, so they can
/// effectively be treated as identical. This reduces storage space
/// substantially.
///
/// The total number of NFA states (13) is greater than the total number of
/// NFA states that are in the DFA. In particular, any NFA state that can only
/// be reached by epsilon transitions will never have explicit usage in the
/// DFA.
const TRANS_CLASSES: usize = 7;
const DFA_STATES: usize = 10;
const TRANS_SIZE: usize = TRANS_CLASSES * DFA_STATES;

/// The number of possible transition classes. (See the comment on `TRANS_SIZE`
/// for more details.)
const CLASS_SIZE: usize = 256;

/// A representation of a DFA.
///
/// For the most part, this is a transition table, but various optimizations
/// have been applied to reduce its memory footprint.
struct Dfa {
    /// The core transition table. Each row corresponds to the transitions for
    /// each input equivalence class. (Input bytes are mapped to their
    /// corresponding equivalence class with the `classes` map.)
    ///
    /// DFA states are represented as an index corresponding to the start of
    /// its row in this table.
    trans: [DfaState; TRANS_SIZE],
    /// A table with the same layout as `trans`, except its values indicate
    /// whether a particular `(state, equivalence class)` pair should emit an
    /// output byte.
    has_output: [bool; TRANS_SIZE],
    /// A map from input byte to equivalence class.
    ///
    /// This is responsible for reducing the effective alphabet size from
    /// 256 to `TRANS_CLASSES`.
    classes: DfaClasses,
    /// The DFA state corresponding to being inside an unquoted field.
    in_field: DfaState,
    /// The DFA state corresponding to being inside an quoted field.
    in_quoted: DfaState,
    /// The minimum DFA state that indicates a field has been parsed. All DFA
    /// states greater than this are also final-field states.
    final_field: DfaState,
    /// The minimum DFA state that indicates a record has been parsed. All DFA
    /// states greater than this are also final-record states.
    final_record: DfaState,
}

impl Dfa {
    fn new() -> Dfa {
        Dfa {
            trans: [DfaState(0); TRANS_SIZE],
            has_output: [false; TRANS_SIZE],
            classes: DfaClasses::new(),
            in_field: DfaState(0),
            in_quoted: DfaState(0),
            final_field: DfaState(0),
            final_record: DfaState(0),
        }
    }

    fn new_state(&self, nfa_state: NfaState) -> DfaState {
        let nclasses = self.classes.num_classes() as u8;
        let idx = (nfa_state as u8).checked_mul(nclasses).unwrap();
        DfaState(idx)
    }

    fn new_state_final_end(&self) -> DfaState {
        self.new_state(NfaState::StartRecord)
    }

    fn new_state_final_record(&self) -> DfaState {
        self.new_state(NfaState::EndRecord)
    }

    fn get_output(&self, state: DfaState, c: u8) -> (DfaState, bool) {
        let cls = self.classes.classes[c as usize];
        let idx = state.0 as usize + cls as usize;
        (self.trans[idx], self.has_output[idx])
    }

    fn set(&mut self, from: DfaState, c: u8, to: DfaState, output: bool) {
        let cls = self.classes.classes[c as usize];
        let idx = from.0 as usize + cls as usize;
        self.trans[idx] = to;
        self.has_output[idx] = output;
    }

    fn finish(&mut self) {
        self.in_field = self.new_state(NfaState::InField);
        self.in_quoted = self.new_state(NfaState::InQuotedField);
        self.final_field = self.new_state(NfaState::EndFieldDelim);
        self.final_record = self.new_state(NfaState::EndRecord);
    }

    fn new_read_field_result(
        &self,
        state: DfaState,
        is_final_trans: bool,
        inpdone: bool,
        outdone: bool,
    ) -> ReadFieldResult {
        if state >= self.final_record {
            ReadFieldResult::Field { record_end: true }
        } else if state == self.final_field {
            ReadFieldResult::Field { record_end: false }
        } else if is_final_trans && state.is_start() {
            ReadFieldResult::End
        } else {
            debug_assert!(state < self.final_field);
            if !inpdone && outdone {
                ReadFieldResult::OutputFull
            } else {
                ReadFieldResult::InputEmpty
            }
        }
    }

    fn new_read_record_result(
        &self,
        state: DfaState,
        is_final_trans: bool,
        inpdone: bool,
        outdone: bool,
        endsdone: bool,
    ) -> ReadRecordResult {
        if state >= self.final_record {
            ReadRecordResult::Record
        } else if is_final_trans && state.is_start() {
            ReadRecordResult::End
        } else {
            debug_assert!(state < self.final_record);
            if !inpdone && outdone {
                ReadRecordResult::OutputFull
            } else if !inpdone && endsdone {
                ReadRecordResult::OutputEndsFull
            } else {
                ReadRecordResult::InputEmpty
            }
        }
    }
}

/// A map from input byte to equivalence class.
struct DfaClasses {
    classes: [u8; CLASS_SIZE],
    next_class: usize,
}

impl DfaClasses {
    fn new() -> DfaClasses {
        DfaClasses { classes: [0; CLASS_SIZE], next_class: 1 }
    }

    fn add(&mut self, b: u8) {
        if self.next_class > CLASS_SIZE {
            panic!("added too many classes")
        }
        self.classes[b as usize] = self.next_class as u8;
        self.next_class = self.next_class + 1;
    }

    fn num_classes(&self) -> usize {
        self.next_class as usize
    }

    /// Scan and copy the input bytes to the output buffer quickly.
    ///
    /// This assumes that the current state of the DFA is either `InField` or
    /// `InQuotedField`. In this case, all bytes corresponding to the first
    /// equivalence class (i.e., not a delimiter/quote/escape/etc.) are
    /// guaranteed to never result in a state transition out of the current
    /// state. This function takes advantage of that copies every byte from
    /// `input` in the first equivalence class to `output`. Once a byte is seen
    /// outside the first equivalence class, we quit and should fall back to
    /// the main DFA loop.
    #[inline(always)]
    fn scan_and_copy(
        &self,
        input: &[u8],
        nin: &mut usize,
        output: &mut [u8],
        nout: &mut usize,
    ) {
        while
            *nin < input.len()
            && *nout < output.len()
            && self.classes[input[*nin] as usize] == 0
        {
            output[*nout] = input[*nin];
            *nin += 1;
            *nout += 1;
        }
    }
}

/// A single DFA state.
///
/// A DFA state is represented by the starting index of its corresponding row
/// in the DFA transition table. This representation allows us to elide a
/// single multiplication instruction when computing the next transition for
/// a particular input byte.
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
struct DfaState(u8);

impl DfaState {
    fn start() -> DfaState {
        DfaState(0)
    }

    fn is_start(&self) -> bool {
        self.0 == 0
    }
}

impl fmt::Debug for Dfa {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Dfa(N/A)")
    }
}

impl fmt::Debug for DfaClasses {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "DfaClasses {{ classes: N/A, next_class: {:?} }}",
            self.next_class)
    }
}

impl Clone for Dfa {
    fn clone(&self) -> Dfa {
        let mut dfa = Dfa::new();
        dfa.trans.copy_from_slice(&self.trans);
        dfa
    }
}

impl Clone for DfaClasses {
    fn clone(&self) -> DfaClasses {
        let mut x = DfaClasses::new();
        x.classes.copy_from_slice(&self.classes);
        x
    }
}

#[cfg(test)]
mod tests {
    use core::str;

    use arrayvec::{ArrayString, ArrayVec};

    use super::{
        Reader, ReaderBuilder, ReadFieldResult, Terminator,
    };

    type Csv = ArrayVec<[Row; 10]>;
    type Row = ArrayVec<[Field; 10]>;
    type Field = ArrayString<[u8; 10]>;

    // OMG I HATE BYTE STRING LITERALS SO MUCH.
    fn b(s: &str) -> &[u8] { s.as_bytes() }

    macro_rules! csv {
        ($([$($field:expr),*]),*) => {{
            #[allow(unused_mut)]
            fn x() -> Csv {
                let mut csv = Csv::new();
                $(
                    let mut row = Row::new();
                    $(
                        row.push(Field::from($field).unwrap());
                    )*
                    csv.push(row);
                )*
                csv
            }
            x()
        }}
    }

    macro_rules! parses_to {
        ($name:ident, $data:expr, $expected:expr) => {
            parses_to!($name, $data, $expected, |builder| builder);
        };
        ($name:ident, $data:expr, $expected:expr, $config:expr) => {
            #[test]
            fn $name() {
                let mut builder = ReaderBuilder::new();
                builder.nfa(true);
                $config(&mut builder);
                let mut rdr = builder.build();
                let got = parse_by_field(&mut rdr, $data);
                let expected = $expected;
                assert_eq!(expected, got, "nfa by field");

                let mut builder = ReaderBuilder::new();
                builder.nfa(true);
                $config(&mut builder);
                let mut rdr = builder.build();
                let got = parse_by_record(&mut rdr, $data);
                let expected = $expected;
                assert_eq!(expected, got, "nfa by record");

                let mut builder = ReaderBuilder::new();
                $config(&mut builder);
                let mut rdr = builder.build();
                let got = parse_by_field(&mut rdr, $data);
                let expected = $expected;
                assert_eq!(expected, got, "dfa by field");

                let mut builder = ReaderBuilder::new();
                $config(&mut builder);
                let mut rdr = builder.build();
                let got = parse_by_record(&mut rdr, $data);
                let expected = $expected;
                assert_eq!(expected, got, "dfa by record");
            }
        };
    }

    fn parse_by_field(rdr: &mut Reader, data: &str) -> Csv {
        let mut data = data.as_bytes();
        let mut field = [0u8; 10];
        let mut csv = Csv::new();
        let mut row = Row::new();
        let mut outpos = 0;
        loop {
            let (res, nin, nout) = rdr.read_field(data, &mut field[outpos..]);
            data = &data[nin..];
            outpos += nout;

            match res {
                ReadFieldResult::InputEmpty => {
                    if !data.is_empty() {
                        panic!("missing input data")
                    }
                }
                ReadFieldResult::OutputFull => panic!("field too large"),
                ReadFieldResult::Field { record_end } => {
                    let s = str::from_utf8(&field[..outpos]).unwrap();
                    row.push(Field::from(s).unwrap());
                    outpos = 0;
                    if record_end {
                        csv.push(row);
                        row = Row::new();
                    }
                }
                ReadFieldResult::End => {
                    return csv;
                }
            }
        }
    }

    fn parse_by_record(rdr: &mut Reader, data: &str) -> Csv {
        use ReadRecordResult::*;

        let mut data = data.as_bytes();
        let mut record = [0; 1024];
        let mut ends = [0; 10];

        let mut csv = Csv::new();
        let (mut outpos, mut endpos) = (0, 0);
        loop {
            let (res, nin, nout, nend) = rdr.read_record(
                data, &mut record[outpos..], &mut ends[endpos..]);
            data = &data[nin..];
            outpos += nout;
            endpos += nend;

            match res {
                InputEmpty => {
                    if !data.is_empty() {
                        panic!("missing input data")
                    }
                }
                OutputFull => panic!("record too large (out buffer)"),
                OutputEndsFull => panic!("record too large (end buffer)"),
                Record => {
                    let s = str::from_utf8(&record[..outpos]).unwrap();
                    let mut start = 0;
                    let mut row = Row::new();
                    for &end in &ends[..endpos] {
                        row.push(Field::from(&s[start..end]).unwrap());
                        start = end;
                    }
                    csv.push(row);
                    outpos = 0;
                    endpos = 0;
                }
                End => return csv,
            }
        }
    }

    parses_to!(one_row_one_field, "a", csv![["a"]]);
    parses_to!(one_row_many_fields, "a,b,c", csv![["a", "b", "c"]]);
    parses_to!(one_row_trailing_comma, "a,b,", csv![["a", "b", ""]]);
    parses_to!(one_row_one_field_lf, "a\n", csv![["a"]]);
    parses_to!(one_row_many_fields_lf, "a,b,c\n", csv![["a", "b", "c"]]);
    parses_to!(one_row_trailing_comma_lf, "a,b,\n", csv![["a", "b", ""]]);
    parses_to!(one_row_one_field_crlf, "a\r\n", csv![["a"]]);
    parses_to!(one_row_many_fields_crlf, "a,b,c\r\n", csv![["a", "b", "c"]]);
    parses_to!(one_row_trailing_comma_crlf, "a,b,\r\n", csv![["a", "b", ""]]);
    parses_to!(one_row_one_field_cr, "a\r", csv![["a"]]);
    parses_to!(one_row_many_fields_cr, "a,b,c\r", csv![["a", "b", "c"]]);
    parses_to!(one_row_trailing_comma_cr, "a,b,\r", csv![["a", "b", ""]]);

    parses_to!(many_rows_one_field, "a\nb", csv![["a"], ["b"]]);
    parses_to!(
        many_rows_many_fields,
       "a,b,c\nx,y,z", csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(
        many_rows_trailing_comma,
        "a,b,\nx,y,", csv![["a", "b", ""], ["x", "y", ""]]);
    parses_to!(many_rows_one_field_lf, "a\nb\n", csv![["a"], ["b"]]);
    parses_to!(
        many_rows_many_fields_lf,
        "a,b,c\nx,y,z\n", csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(
        many_rows_trailing_comma_lf,
        "a,b,\nx,y,\n", csv![["a", "b", ""], ["x", "y", ""]]);
    parses_to!(many_rows_one_field_crlf, "a\r\nb\r\n", csv![["a"], ["b"]]);
    parses_to!(
        many_rows_many_fields_crlf,
        "a,b,c\r\nx,y,z\r\n",
        csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(many_rows_trailing_comma_crlf,
               "a,b,\r\nx,y,\r\n", csv![["a", "b", ""], ["x", "y", ""]]);
    parses_to!(many_rows_one_field_cr, "a\rb\r", csv![["a"], ["b"]]);
    parses_to!(
        many_rows_many_fields_cr,
        "a,b,c\rx,y,z\r", csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(
        many_rows_trailing_comma_cr,
        "a,b,\rx,y,\r", csv![["a", "b", ""], ["x", "y", ""]]);

    parses_to!(
        trailing_lines_no_record,
        "\n\n\na,b,c\nx,y,z\n\n\n",
        csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(
        trailing_lines_no_record_cr,
        "\r\r\ra,b,c\rx,y,z\r\r\r",
        csv![["a", "b", "c"], ["x", "y", "z"]]);
    parses_to!(
        trailing_lines_no_record_crlf,
        "\r\n\r\n\r\na,b,c\r\nx,y,z\r\n\r\n\r\n",
        csv![["a", "b", "c"], ["x", "y", "z"]]);

    parses_to!(empty, "", csv![]);
    parses_to!(empty_lines, "\n\n\n\n", csv![]);
    parses_to!(
        empty_lines_interspersed, "\n\na,b\n\n\nx,y\n\n\nm,n\n",
        csv![["a", "b"], ["x", "y"], ["m", "n"]]);
    parses_to!(empty_lines_crlf, "\r\n\r\n\r\n\r\n", csv![]);
    parses_to!(
        empty_lines_interspersed_crlf,
        "\r\n\r\na,b\r\n\r\n\r\nx,y\r\n\r\n\r\nm,n\r\n",
        csv![["a", "b"], ["x", "y"], ["m", "n"]]);
    parses_to!(empty_lines_mixed, "\r\n\n\r\n\n", csv![]);
    parses_to!(
        empty_lines_interspersed_mixed,
        "\n\r\na,b\r\n\n\r\nx,y\r\n\n\r\nm,n\r\n",
        csv![["a", "b"], ["x", "y"], ["m", "n"]]);
    parses_to!(empty_lines_cr, "\r\r\r\r", csv![]);
    parses_to!(
        empty_lines_interspersed_cr, "\r\ra,b\r\r\rx,y\r\r\rm,n\r",
        csv![["a", "b"], ["x", "y"], ["m", "n"]]);

    parses_to!(
        term_weird, "zza,bzc,dzz",
        csv![["a", "b"], ["c", "d"]],
        |b: &mut ReaderBuilder| { b.terminator(Terminator::Any(b'z')); });

    parses_to!(
        ascii_delimited, "a\x1fb\x1ec\x1fd",
        csv![["a", "b"], ["c", "d"]],
        |b: &mut ReaderBuilder| { b.ascii(); });

    parses_to!(quote_empty, "\"\"", csv![[""]]);
    parses_to!(quote_lf, "\"\"\n", csv![[""]]);
    parses_to!(quote_space, "\" \"", csv![[" "]]);
    parses_to!(quote_inner_space, "\" a \"", csv![[" a "]]);
    parses_to!(quote_outer_space, "  \"a\"  ", csv![["  \"a\"  "]]);

    parses_to!(quote_change, "zaz", csv![["a"]],
               |b: &mut ReaderBuilder| { b.quote(b'z'); });

    // This one is pretty hokey.
    // I don't really know what the "right" behavior is.
    parses_to!(quote_delimiter, ",a,,b", csv![["a,b"]],
               |b: &mut ReaderBuilder| { b.quote(b','); });

    parses_to!(quote_no_escapes, r#""a\"b""#, csv![[r#"a\b""#]]);
    parses_to!(quote_escapes_no_double, r#""a""b""#, csv![[r#"a"b""#]],
               |b: &mut ReaderBuilder| { b.double_quote(false); });
    parses_to!(quote_escapes, r#""a\"b""#, csv![[r#"a"b"#]],
               |b: &mut ReaderBuilder| { b.escape(Some(b'\\')); });
    parses_to!(quote_escapes_change, r#""az"b""#, csv![[r#"a"b"#]],
               |b: &mut ReaderBuilder| { b.escape(Some(b'z')); });

    parses_to!(delimiter_tabs, "a\tb", csv![["a", "b"]],
               |b: &mut ReaderBuilder| { b.delimiter(b'\t'); });
    parses_to!(delimiter_weird, "azb", csv![["a", "b"]],
               |b: &mut ReaderBuilder| { b.delimiter(b'z'); });

    parses_to!(extra_record_crlf_1, "foo\n1\n", csv![["foo"], ["1"]]);
    parses_to!(extra_record_crlf_2, "foo\r\n1\r\n", csv![["foo"], ["1"]]);

    parses_to!(comment_1, "foo\n# hi\nbar\n", csv![["foo"], ["bar"]],
               |b: &mut ReaderBuilder| { b.comment(Some(b'#')); });
    parses_to!(
        comment_2,
        "foo\n # hi\nbar\n",
        csv![["foo"], [" # hi"], ["bar"]],
        |b: &mut ReaderBuilder| { b.comment(Some(b'#')); });
    parses_to!(
        comment_3,
        "foo\n# hi\nbar\n",
        csv![["foo"], ["# hi"], ["bar"]],
        |b: &mut ReaderBuilder| { b.comment(Some(b'\n')); });

    macro_rules! assert_read {
        (
            $rdr:expr, $input:expr, $output:expr,
            $expect_in:expr, $expect_out:expr, $expect_res:expr
        ) => {{
            let (res, nin, nout) = $rdr.read_field($input, $output);
            assert_eq!($expect_in, nin);
            assert_eq!($expect_out, nout);
            assert_eq!($expect_res, res);
        }};
    }

    // This tests that feeding a new reader with an empty buffer sends us
    // straight to End.
    #[test]
    fn stream_empty() {
        use ReadFieldResult::*;

        let mut rdr = Reader::new();
        assert_read!(rdr, &[], &mut [], 0, 0, End);
    }

    // Test that a single space is treated as a single field.
    #[test]
    fn stream_space() {
        use ReadFieldResult::*;

        let mut rdr = Reader::new();
        assert_read!(rdr, b(" "), &mut [0], 1, 1, InputEmpty);
        assert_read!(rdr, &[], &mut [0], 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], &mut [0], 0, 0, End);
    }

    // Test that a single comma ...
    #[test]
    fn stream_comma() {
        use ReadFieldResult::*;

        let mut rdr = Reader::new();
        assert_read!(rdr, b(","), &mut [0], 1, 0, Field { record_end: false });
        assert_read!(rdr, &[], &mut [0], 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], &mut [0], 0, 0, End);
    }

    // Test that we can read a single large field in multiple output
    // buffers.
    #[test]
    fn stream_output_chunks() {
        use ReadFieldResult::*;

        let mut inp = b("fooquux");
        let mut out = &mut [0; 2];
        let mut rdr = Reader::new();

        assert_read!(rdr, inp, out, 2, 2, OutputFull);
        assert_eq!(out, b("fo"));
        inp = &inp[2..];

        assert_read!(rdr, inp, out, 2, 2, OutputFull);
        assert_eq!(out, b("oq"));
        inp = &inp[2..];

        assert_read!(rdr, inp, out, 2, 2, OutputFull);
        assert_eq!(out, b("uu"));
        inp = &inp[2..];

        assert_read!(rdr, inp, out, 1, 1, InputEmpty);
        assert_eq!(&out[..1], b("x"));
        inp = &inp[1..];
        assert!(inp.is_empty());

        assert_read!(rdr, &[], out, 0, 0, Field { record_end: true });
        assert_read!(rdr, inp, out, 0, 0, End);
    }

    // Test that we can read a single large field across multiple input
    // buffers.
    #[test]
    fn stream_input_chunks() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read!(rdr, b("fo"), out, 2, 2, InputEmpty);
        assert_eq!(&out[..2], b("fo"));

        assert_read!(rdr, b("oq"), &mut out[2..], 2, 2, InputEmpty);
        assert_eq!(&out[..4], b("fooq"));

        assert_read!(rdr, b("uu"), &mut out[4..], 2, 2, InputEmpty);
        assert_eq!(&out[..6], b("fooquu"));

        assert_read!(rdr, b("x"), &mut out[6..], 1, 1, InputEmpty);
        assert_eq!(&out[..7], b("fooquux"));

        assert_read!(rdr, &[], out, 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], out, 0, 0, End);
    }

    // Test we can read doubled quotes correctly in a stream.
    #[test]
    fn stream_doubled_quotes() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read!(rdr, b("\"fo\""), out, 4, 2, InputEmpty);
        assert_eq!(&out[..2], b("fo"));

        assert_read!(rdr, b("\"o"), &mut out[2..], 2, 2, InputEmpty);
        assert_eq!(&out[..4], b("fo\"o"));

        assert_read!(rdr, &[], out, 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], out, 0, 0, End);
    }

    // Test we can read escaped quotes correctly in a stream.
    #[test]
    fn stream_escaped_quotes() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut builder = ReaderBuilder::new();
        let mut rdr = builder.escape(Some(b'\\')).build();

        assert_read!(rdr, b("\"fo\\"), out, 4, 2, InputEmpty);
        assert_eq!(&out[..2], b("fo"));

        assert_read!(rdr, b("\"o"), &mut out[2..], 2, 2, InputEmpty);
        assert_eq!(&out[..4], b("fo\"o"));

        assert_read!(rdr, &[], out, 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], out, 0, 0, End);
    }

    // Test that empty output buffers don't wreak havoc.
    #[test]
    fn stream_empty_output() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read!(
            rdr, b("foo,bar"), out, 4, 3, Field { record_end: false });
        assert_eq!(&out[..3], b("foo"));

        assert_read!(rdr, b("bar"), &mut [], 0, 0, OutputFull);

        assert_read!(rdr, b("bar"), out, 3, 3, InputEmpty);
        assert_eq!(&out[..3], b("bar"));

        assert_read!(rdr, &[], out, 0, 0, Field { record_end: true });
        assert_read!(rdr, &[], out, 0, 0, End);
    }

    // Test that we can reset the parser mid-stream and count on it to do
    // the right thing.
    #[test]
    fn reset_works() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read!(rdr, b("\"foo"), out, 4, 3, InputEmpty);
        assert_eq!(&out[..3], b("foo"));

        // Without reseting the parser state, the reader will remember that
        // we're in a quoted field, and therefore interpret the leading double
        // quotes below as a single quote and the trailing quote as a matching
        // terminator. With the reset, however, the parser forgets the quoted
        // field and treats the leading double quotes as a syntax quirk and
        // drops them, in addition to hanging on to the trailing unmatched
        // quote. (Matches Python's behavior.)
        rdr.reset();

        assert_read!(rdr, b("\"\"bar\""), out, 6, 4, InputEmpty);
        assert_eq!(&out[..4], b("bar\""));
    }

    // Test the line number reporting is correct.
    #[test]
    fn line_numbers() {
        use ReadFieldResult::*;

        let mut out = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_eq!(1, rdr.line());

        assert_read!(rdr, b("\n\n\n\n"), out, 4, 0, InputEmpty);
        assert_eq!(5, rdr.line());

        assert_read!(rdr, b("foo,"), out, 4, 3, Field { record_end: false });
        assert_eq!(5, rdr.line());

        assert_read!(rdr, b("bar\n"), out, 4, 3, Field { record_end: true });
        assert_eq!(6, rdr.line());

        assert_read!(rdr, &[], &mut [0], 0, 0, End);
        assert_eq!(6, rdr.line());
    }

    macro_rules! assert_read_record {
        (
            $rdr:expr, $input:expr, $output:expr, $ends:expr,
            $expect_in:expr, $expect_out:expr,
            $expect_end:expr, $expect_res:expr
        ) => {{
            let (res, nin, nout, nend) =
                $rdr.read_record($input, $output, $ends);
            assert_eq!($expect_res, res, "result");
            assert_eq!($expect_in, nin, "input");
            assert_eq!($expect_out, nout, "output");
            assert_eq!($expect_end, nend, "ends");
        }};
    }

    // Test that we can incrementally read a record.
    #[test]
    fn stream_record() {
        use ReadRecordResult::*;

        let mut inp = b("foo,bar\nbaz");
        let mut out = &mut [0; 1024];
        let mut ends = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read_record!(rdr, &inp, out, ends, 8, 6, 2, Record);
        assert_eq!(ends[0], 3);
        assert_eq!(ends[1], 6);
        inp = &inp[8..];

        assert_read_record!(rdr, &inp, out, ends, 3, 3, 0, InputEmpty);
        inp = &inp[3..];

        assert_read_record!(rdr, &inp, out, ends, 0, 0, 1, Record);
        assert_eq!(ends[0], 3);

        assert_read_record!(rdr, &inp, out, ends, 0, 0, 0, End);
    }

    // Test that if our output ends are full during the last read that
    // we get an appropriate state returned.
    #[test]
    fn stream_record_last_end_output_full() {
        use ReadRecordResult::*;

        let mut inp = b("foo,bar\nbaz");
        let mut out = &mut [0; 1024];
        let mut ends = &mut [0; 10];
        let mut rdr = Reader::new();

        assert_read_record!(rdr, &inp, out, ends, 8, 6, 2, Record);
        assert_eq!(ends[0], 3);
        assert_eq!(ends[1], 6);
        inp = &inp[8..];

        assert_read_record!(rdr, &inp, out, ends, 3, 3, 0, InputEmpty);
        inp = &inp[3..];

        assert_read_record!(rdr, &inp, out, &mut [], 0, 0, 0, OutputEndsFull);
        assert_read_record!(rdr, &inp, out, ends, 0, 0, 1, Record);
        assert_eq!(ends[0], 3);

        assert_read_record!(rdr, &inp, out, ends, 0, 0, 0, End);
    }
}