1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//! Serialization and Deserialization for syntax trees.

use crate::{
    interning::{IntoResolver, Resolver},
    GreenNodeBuilder, Language, NodeOrToken, SyntaxKind, SyntaxNode, WalkEvent,
};
use serde::{
    de::{Error, SeqAccess, Visitor},
    ser::SerializeTuple,
    Deserialize, Serialize,
};
use std::{collections::VecDeque, fmt, marker::PhantomData};

type Rodeo = lasso::Rodeo<lasso::Spur, fxhash::FxBuildHasher>;
type RodeoResolver = lasso::RodeoResolver<lasso::Spur>;

/// Expands to the first expression, if there's
/// no expression following, otherwise return the second expression.
///
/// Required for having two different values if the argument is `$(...)?`.
macro_rules! data_list {
    ($_:expr, $list:expr) => {
        $list
    };

    ($list:expr,) => {
        $list
    };
}

/// Generate the code that should be put inside the [`Serialize`] implementation
/// of a [`SyntaxNode`]-like type.
///
/// It serializes a [`SyntaxNode`] into a tuple with 2 elements.
/// The first element is the serialized event stream that was generated
/// by [`SyntaxNode::preorder_with_tokens()`].
/// The second element is a list of `D`s, where `D` is the data of the nodes.
/// The data may only be serialized if it's `Some(data)`. Each `EnterNode` event
/// contains a boolean which indicates if this node has a data. If it has one,
/// the deserializer should pop the first element from the data list and continue.
///
/// Takes the `Language` (`$l`), `SyntaxNode` (`$node`), `Resolver` (`$resolver`),
/// `Serializer` (`$serializer`), and an optional `data_list` which must be a `mut Vec<D>`.
macro_rules! gen_serialize {
    ($l:ident, $node:expr, $resolver:expr, $ser:ident, $($data_list:ident)?) => {{
        #[allow(unused_variables)]
        let events = $node.preorder_with_tokens().filter_map(|event| match event {
            WalkEvent::Enter(NodeOrToken::Node(node)) => {
                let has_data = false;
                $(let has_data = node
                    .get_data()
                    .map(|data| {
                        $data_list.push(data);
                        true
                    })
                    .unwrap_or(false);)?

                Some(Event::EnterNode($l::kind_to_raw(node.kind()), has_data))
            }
            WalkEvent::Enter(NodeOrToken::Token(tok)) => Some(Event::Token($l::kind_to_raw(tok.kind()), tok.resolve_text($resolver))),

            WalkEvent::Leave(NodeOrToken::Node(_)) => Some(Event::LeaveNode),
            WalkEvent::Leave(NodeOrToken::Token(_)) => None,
        });

        let mut tuple = $ser.serialize_tuple(2)?;

        // TODO(Stupremee): We can easily avoid this allocation but it would
        // require more weird and annoying-to-write code, so I'll skip it for now.
        tuple.serialize_element(&events.collect::<Vec<_>>())?;
        tuple.serialize_element(&data_list!(Vec::<()>::new(), $($data_list)?))?;

        tuple.end()
    }};
}

#[derive(Deserialize, Serialize)]
#[serde(tag = "t", content = "c")]
enum Event<'text> {
    /// The second parameter indicates if this node needs data.
    /// If the boolean is true, the next element inside the data list
    /// must be attached to this node.
    EnterNode(SyntaxKind, bool),
    Token(SyntaxKind, &'text str),
    LeaveNode,
}

/// Make a `SyntaxNode` serializable but without serializing the data.
pub(crate) struct SerializeWithResolver<'node, 'resolver, L: Language, D: 'static, RN: 'static, R> {
    pub(crate) node:     &'node SyntaxNode<L, D, RN>,
    pub(crate) resolver: &'resolver R,
}

/// Make a `SyntaxNode` serializable which will include the data for serialization.
pub(crate) struct SerializeWithData<'node, 'resolver, L: Language, D: 'static, RN: 'static, R> {
    pub(crate) node:     &'node SyntaxNode<L, D, RN>,
    pub(crate) resolver: &'resolver R,
}

impl<L, D, RN, R> Serialize for SerializeWithData<'_, '_, L, D, RN, R>
where
    L: Language,
    R: Resolver,
    D: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let mut data_list = Vec::new();
        gen_serialize!(L, self.node, self.resolver, serializer, data_list)
    }
}

impl<L, D, RN, R> Serialize for SerializeWithResolver<'_, '_, L, D, RN, R>
where
    L: Language,
    R: Resolver,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        gen_serialize!(L, self.node, self.resolver, serializer,)
    }
}

impl<L, D, R> Serialize for SyntaxNode<L, D, R>
where
    L: Language,
    D: Serialize,
    R: Resolver,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let node = SerializeWithResolver {
            node:     self,
            resolver: self.resolver().as_ref(),
        };
        node.serialize(serializer)
    }
}

impl<'de, L, D> Deserialize<'de> for SyntaxNode<L, D, RodeoResolver>
where
    L: Language,
    D: Deserialize<'de>,
{
    // Deserialization is done by walking down the deserialized event stream,
    // which is the first element inside the tuple. The events
    // are then passed to a `GreenNodeBuilder` which will do all
    // the hard work for use.
    //
    // While walking the event stream, we also store a list of booleans,
    // which indicate which node needs to set data. After creating the tree,
    // we walk down the nodes, check if the bool at `data_list[idx]` is true,
    // and if so, pop the first element of the data list and attach the data
    // to the current node.
    fn deserialize<DE>(deserializer: DE) -> Result<Self, DE::Error>
    where
        DE: serde::Deserializer<'de>,
    {
        struct EventVisitor<L: Language, D: 'static> {
            _marker: PhantomData<SyntaxNode<L, D, Rodeo>>,
        }

        impl<'de, L, D> Visitor<'de> for EventVisitor<L, D>
        where
            L: Language,
            D: Deserialize<'de>,
        {
            type Value = (SyntaxNode<L, D, RodeoResolver>, VecDeque<bool>);

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("a list of tree events")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: SeqAccess<'de>,
            {
                let mut builder = GreenNodeBuilder::new();
                let mut data_indices = VecDeque::new();

                while let Some(next) = seq.next_element::<Event<'_>>()? {
                    match next {
                        Event::EnterNode(kind, has_data) => {
                            builder.start_node(kind);
                            data_indices.push_back(has_data);
                        }
                        Event::Token(kind, text) => builder.token(kind, text),
                        Event::LeaveNode => builder.finish_node(),
                    }
                }

                let (tree, resolver) = builder.finish();
                let tree = SyntaxNode::new_root_with_resolver(tree, resolver.unwrap().into_resolver());
                Ok((tree, data_indices))
            }
        }

        struct ProcessedEvents<L: Language, D: 'static>(SyntaxNode<L, D, RodeoResolver>, VecDeque<bool>);
        impl<'de, L, D> Deserialize<'de> for ProcessedEvents<L, D>
        where
            L: Language,
            D: Deserialize<'de>,
        {
            fn deserialize<DE>(deserializer: DE) -> Result<Self, DE::Error>
            where
                DE: serde::Deserializer<'de>,
            {
                let (tree, ids) = deserializer.deserialize_seq(EventVisitor { _marker: PhantomData })?;
                Ok(Self(tree, ids))
            }
        }

        let (ProcessedEvents(tree, data_indices), mut data) =
            <(ProcessedEvents<L, D>, VecDeque<D>)>::deserialize(deserializer)?;

        tree.descendants().zip(data_indices).try_for_each(|(node, has_data)| {
            if has_data {
                let data = data
                    .pop_front()
                    .ok_or_else(|| DE::Error::custom("invalid serialized tree"))?;
                node.set_data(data);
            }
            <Result<(), DE::Error>>::Ok(())
        })?;

        if !data.is_empty() {
            Err(DE::Error::custom(
                "serialized SyntaxNode contained too many data elements",
            ))
        } else {
            Ok(tree)
        }
    }
}

impl Serialize for SyntaxKind {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serializer.serialize_u16(self.0)
    }
}

impl<'de> Deserialize<'de> for SyntaxKind {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        Ok(Self(u16::deserialize(deserializer)?))
    }
}