cstr_core/lib.rs
1#![cfg_attr(not(feature = "std"), no_std)]
2#![warn(rust_2018_idioms)]
3#![cfg_attr(feature = "nightly", feature(const_raw_ptr_deref))]
4#![cfg_attr(feature = "nightly", feature(const_slice_from_raw_parts))]
5#![cfg_attr(feature = "nightly", feature(const_str_from_utf8))]
6#![cfg_attr(feature = "nightly", feature(const_eval_select))]
7#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
8
9#[cfg(test)]
10extern crate std;
11
12#[cfg(feature = "alloc")]
13extern crate alloc;
14
15#[cfg(feature = "alloc")]
16use alloc::borrow::{Borrow, Cow, ToOwned};
17#[cfg(feature = "alloc")]
18use alloc::boxed::Box;
19#[cfg(feature = "alloc")]
20use alloc::rc::Rc;
21#[cfg(feature = "alloc")]
22use alloc::string::String;
23#[cfg(feature = "alloc")]
24#[cfg(feature = "arc")]
25use alloc::sync::Arc;
26#[cfg(feature = "alloc")]
27use alloc::vec::Vec;
28#[cfg(feature = "alloc")]
29use core::{mem, ops, ptr};
30
31use core::ascii;
32use core::cmp::Ordering;
33use core::fmt::{self, Write};
34use core::slice;
35use core::str::{self, Utf8Error};
36
37/// Re-export c_char
38pub use cty::c_char;
39
40#[inline]
41unsafe fn strlen(p: *const c_char) -> usize {
42 let mut n = 0;
43 while *p.offset(n as isize) != 0 {
44 n += 1;
45 }
46 n
47}
48
49/// A drop-in implementation of `memchr` that is const.
50///
51/// This is expected to perform way worse than any version the `memchr` crate provides.
52#[cfg(feature = "nightly")]
53const fn memchr_const(needle: u8, haystack: &[u8]) -> Option<usize> {
54 let mut i = 0;
55 loop {
56 i += 1;
57 if haystack.len() == i {
58 return None;
59 }
60 if haystack[i] == needle {
61 return Some(i);
62 }
63 }
64}
65
66/// Wrapper around memchr that is const, but still fast at runtime by dispatching through
67/// const_eval_select.
68#[inline]
69#[cfg(feature = "nightly")]
70const fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
71 // unsafe: Both versions provide the same functionality
72 unsafe { core::intrinsics::const_eval_select((needle, haystack), memchr_const, memchr::memchr) }
73}
74
75#[cfg(not(feature = "nightly"))]
76use memchr::memchr;
77
78/// A type representing an owned, C-compatible, nul-terminated string with no nul bytes in the
79/// middle.
80///
81/// This type serves the purpose of being able to safely generate a
82/// C-compatible string from a Rust byte slice or vector. An instance of this
83/// type is a static guarantee that the underlying bytes contain no interior 0
84/// bytes ("nul characters") and that the final byte is 0 ("nul terminator").
85///
86/// `CString` is to [`&CStr`] as [`String`] is to [`&str`]: the former
87/// in each pair are owned strings; the latter are borrowed
88/// references.
89///
90/// # Creating a `CString`
91///
92/// A `CString` is created from either a byte slice or a byte vector,
93/// or anything that implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>` (for
94/// example, you can build a `CString` straight out of a [`String`] or
95/// a [`&str`], since both implement that trait).
96///
97/// The [`new`] method will actually check that the provided `&[u8]`
98/// does not have 0 bytes in the middle, and return an error if it
99/// finds one.
100///
101/// # Extracting a raw pointer to the whole C string
102///
103/// `CString` implements a [`as_ptr`] method through the [`Deref`]
104/// trait. This method will give you a `*const c_char` which you can
105/// feed directly to extern functions that expect a nul-terminated
106/// string, like C's `strdup()`. Notice that [`as_ptr`] returns a
107/// read-only pointer; if the C code writes to it, that causes
108/// undefined behavior.
109///
110/// # Extracting a slice of the whole C string
111///
112/// Alternatively, you can obtain a `&[`[`u8`]`]` slice from a
113/// `CString` with the [`as_bytes`] method. Slices produced in this
114/// way do *not* contain the trailing nul terminator. This is useful
115/// when you will be calling an extern function that takes a `*const
116/// u8` argument which is not necessarily nul-terminated, plus another
117/// argument with the length of the string — like C's `strndup()`.
118/// You can of course get the slice's length with its
119/// [`len`][slice.len] method.
120///
121/// If you need a `&[`[`u8`]`]` slice *with* the nul terminator, you
122/// can use [`as_bytes_with_nul`] instead.
123///
124/// Once you have the kind of slice you need (with or without a nul
125/// terminator), you can call the slice's own
126/// [`as_ptr`][slice.as_ptr] method to get a read-only raw pointer to pass to
127/// extern functions. See the documentation for that function for a
128/// discussion on ensuring the lifetime of the raw pointer.
129///
130/// [`new`]: #method.new
131/// [`as_bytes`]: #method.as_bytes
132/// [`as_bytes_with_nul`]: #method.as_bytes_with_nul
133/// [`as_ptr`]: #method.as_ptr
134/// [slice.len]: ../primitive.slice.html#method.len
135/// [`Deref`]: core::ops::Deref
136/// [`CStr`]: struct.CStr.html
137/// [`&CStr`]: struct.CStr.html
138///
139/// # Examples
140///
141/// ```ignore (extern-declaration)
142/// # fn main() {
143/// use cstr_core::CString;
144/// use cstr_core::c_char;
145///
146/// extern {
147/// fn my_printer(s: *const c_char);
148/// }
149///
150/// // We are certain that our string doesn't have 0 bytes in the middle,
151/// // so we can .expect()
152/// let c_to_print = CString::new("Hello, world!").expect("CString::new failed");
153/// unsafe {
154/// my_printer(c_to_print.as_ptr());
155/// }
156/// # }
157/// ```
158///
159/// # Safety
160///
161/// `CString` is intended for working with traditional C-style strings
162/// (a sequence of non-nul bytes terminated by a single nul byte); the
163/// primary use case for these kinds of strings is interoperating with C-like
164/// code. Often you will need to transfer ownership to/from that external
165/// code. It is strongly recommended that you thoroughly read through the
166/// documentation of `CString` before use, as improper ownership management
167/// of `CString` instances can lead to invalid memory accesses, memory leaks,
168/// and other memory errors.
169
170#[cfg(feature = "alloc")]
171#[derive(PartialEq, PartialOrd, Eq, Ord, Hash, Clone)]
172pub struct CString {
173 // Invariant 1: the slice ends with a zero byte and has a length of at least one.
174 // Invariant 2: the slice contains only one zero byte.
175 // Improper usage of unsafe function can break Invariant 2, but not Invariant 1.
176 inner: Box<[u8]>,
177}
178
179/// Representation of a borrowed C string.
180///
181/// This type represents a borrowed reference to a nul-terminated
182/// array of bytes. It can be constructed safely from a `&[`[`u8`]`]`
183/// slice, or unsafely from a raw `*const c_char`. It can then be
184/// converted to a Rust [`&str`] by performing UTF-8 validation, or
185/// into an owned [`CString`].
186///
187/// `&CStr` is to [`CString`] as [`&str`] is to [`String`]: the former
188/// in each pair are borrowed references; the latter are owned
189/// strings.
190///
191/// Note that this structure is **not** `repr(C)` and is not recommended to be
192/// placed in the signatures of FFI functions. Instead, safe wrappers of FFI
193/// functions may leverage the unsafe [`from_ptr`] constructor to provide a safe
194/// interface to other consumers.
195///
196/// # Examples
197///
198/// Inspecting a foreign C string:
199///
200/// ```ignore (extern-declaration)
201/// use cstr_core::CStr;
202/// use cstr_core::c_char;
203///
204/// extern { fn my_string() -> *const c_char; }
205///
206/// unsafe {
207/// let slice = CStr::from_ptr(my_string());
208/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
209/// }
210/// ```
211///
212/// Passing a Rust-originating C string:
213///
214/// ```ignore (extern-declaration)
215/// use cstr_core::{CString, CStr};
216/// use cstr_core::c_char;
217///
218/// fn work(data: &CStr) {
219/// extern { fn work_with(data: *const c_char); }
220///
221/// unsafe { work_with(data.as_ptr()) }
222/// }
223///
224/// let s = CString::new("data data data data").expect("CString::new failed");
225/// work(&s);
226/// ```
227///
228/// Converting a foreign C string into a Rust [`String`]:
229///
230/// ```ignore (extern-declaration)
231/// use cstr_core::CStr;
232/// use cstr_core::c_char;
233///
234/// extern { fn my_string() -> *const c_char; }
235///
236/// fn my_string_safe() -> String {
237/// unsafe {
238/// CStr::from_ptr(my_string()).to_string_lossy().into_owned()
239/// }
240/// }
241///
242/// println!("string: {}", my_string_safe());
243/// ```
244///
245/// [`CString`]: struct.CString.html
246/// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html
247/// [`from_ptr`]: #method.from_ptr
248#[derive(Hash)]
249// FIXME:
250// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
251// on `CStr` being layout-compatible with `[u8]`.
252// When attribute privacy is implemented, `CStr` should be annotated as `#[repr(transparent)]`.
253// Anyway, `CStr` representation and layout are considered implementation detail, are
254// not documented and must not be relied upon.
255pub struct CStr {
256 // FIXME: this should not be represented with a DST slice but rather with
257 // just a raw `c_char` along with some form of marker to make
258 // this an unsized type. Essentially `sizeof(&CStr)` should be the
259 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
260 inner: [c_char],
261}
262
263/// An error indicating that an interior nul byte was found.
264///
265/// While Rust strings may contain nul bytes in the middle, C strings
266/// can't, as that byte would effectively truncate the string.
267///
268/// This error is created by the [`new`][`CString::new`] method on
269/// [`CString`]. See its documentation for more.
270///
271/// [`CString`]: struct.CString.html
272/// [`CString::new`]: struct.CString.html#method.new
273///
274/// # Examples
275///
276/// ```
277/// use cstr_core::{CString, NulError};
278///
279/// let _: NulError = CString::new(b"f\0oo".to_vec()).unwrap_err();
280/// ```
281#[cfg(feature = "alloc")]
282#[derive(Clone, PartialEq, Eq, Debug)]
283pub struct NulError(usize, Vec<u8>);
284
285/// An error indicating that a nul byte was not in the expected position.
286///
287/// The slice used to create a [`CStr`] must have one and only one nul
288/// byte at the end of the slice.
289///
290/// This error is created by the
291/// [`from_bytes_with_nul`][`CStr::from_bytes_with_nul`] method on
292/// [`CStr`]. See its documentation for more.
293///
294/// [`CStr`]: struct.CStr.html
295/// [`CStr::from_bytes_with_nul`]: struct.CStr.html#method.from_bytes_with_nul
296///
297/// # Examples
298///
299/// ```
300/// use cstr_core::{CStr, FromBytesWithNulError};
301///
302/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
303/// ```
304#[derive(Clone, PartialEq, Eq, Debug)]
305pub struct FromBytesWithNulError {
306 kind: FromBytesWithNulErrorKind,
307}
308
309#[derive(Clone, PartialEq, Eq, Debug)]
310enum FromBytesWithNulErrorKind {
311 InteriorNul(usize),
312 NotNulTerminated,
313}
314
315impl FromBytesWithNulError {
316 const fn interior_nul(pos: usize) -> FromBytesWithNulError {
317 FromBytesWithNulError {
318 kind: FromBytesWithNulErrorKind::InteriorNul(pos),
319 }
320 }
321 const fn not_nul_terminated() -> FromBytesWithNulError {
322 FromBytesWithNulError {
323 kind: FromBytesWithNulErrorKind::NotNulTerminated,
324 }
325 }
326}
327
328/// An error indicating invalid UTF-8 when converting a [`CString`] into a [`String`].
329///
330/// `CString` is just a wrapper over a buffer of bytes with a nul
331/// terminator; [`into_string`][`CString::into_string`] performs UTF-8
332/// validation on those bytes and may return this error.
333///
334/// This `struct` is created by the
335/// [`into_string`][`CString::into_string`] method on [`CString`]. See
336/// its documentation for more.
337///
338/// [`CString`]: struct.CString.html
339/// [`CString::into_string`]: struct.CString.html#method.into_string
340#[cfg(feature = "alloc")]
341#[derive(Clone, PartialEq, Eq, Debug)]
342pub struct IntoStringError {
343 inner: CString,
344 error: Utf8Error,
345}
346
347#[cfg(feature = "alloc")]
348impl CString {
349 /// Creates a new C-compatible string from a container of bytes.
350 ///
351 /// This function will consume the provided data and use the
352 /// underlying bytes to construct a new string, ensuring that
353 /// there is a trailing 0 byte. This trailing 0 byte will be
354 /// appended by this function; the provided data should *not*
355 /// contain any 0 bytes in it.
356 ///
357 /// # Examples
358 ///
359 /// ```ignore (extern-declaration)
360 /// use cstr_core::CString;
361 /// use cstr_core::c_char;
362 ///
363 /// extern { fn puts(s: *const c_char); }
364 ///
365 /// let to_print = CString::new("Hello!").expect("CString::new failed");
366 /// unsafe {
367 /// puts(to_print.as_ptr());
368 /// }
369 /// ```
370 ///
371 /// # Errors
372 ///
373 /// This function will return an error if the supplied bytes contain an
374 /// internal 0 byte. The [`NulError`] returned will contain the bytes as well as
375 /// the position of the nul byte.
376 ///
377 /// [`NulError`]: struct.NulError.html
378 pub fn new<T: Into<Vec<u8>>>(t: T) -> Result<CString, NulError> {
379 Self::_new(t.into())
380 }
381
382 fn _new(bytes: Vec<u8>) -> Result<CString, NulError> {
383 match memchr::memchr(0, &bytes) {
384 Some(i) => Err(NulError(i, bytes)),
385 None => Ok(unsafe { CString::from_vec_unchecked(bytes) }),
386 }
387 }
388
389 /// Creates a C-compatible string from a byte vector without checking for
390 /// interior 0 bytes.
391 ///
392 /// This method is equivalent to [`new`] except that no runtime assertion
393 /// is made that `v` contains no 0 bytes, and it requires an actual
394 /// byte vector, not anything that can be converted to one with Into.
395 ///
396 /// [`new`]: #method.new
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// use cstr_core::CString;
402 ///
403 /// let raw = b"foo".to_vec();
404 /// unsafe {
405 /// let c_string = CString::from_vec_unchecked(raw);
406 /// }
407 /// ```
408 pub unsafe fn from_vec_unchecked(mut v: Vec<u8>) -> CString {
409 v.reserve_exact(1);
410 v.push(0);
411 CString {
412 inner: v.into_boxed_slice(),
413 }
414 }
415
416 /// Retakes ownership of a `CString` that was transferred to C via [`into_raw`].
417 ///
418 /// Additionally, the length of the string will be recalculated from the pointer.
419 ///
420 /// # Safety
421 ///
422 /// This should only ever be called with a pointer that was earlier
423 /// obtained by calling [`into_raw`] on a `CString`. Other usage (e.g., trying to take
424 /// ownership of a string that was allocated by foreign code) is likely to lead
425 /// to undefined behavior or allocator corruption.
426 ///
427 /// > **Note:** If you need to borrow a string that was allocated by
428 /// > foreign code, use [`CStr`]. If you need to take ownership of
429 /// > a string that was allocated by foreign code, you will need to
430 /// > make your own provisions for freeing it appropriately, likely
431 /// > with the foreign code's API to do that.
432 ///
433 /// [`into_raw`]: #method.into_raw
434 /// [`CStr`]: struct.CStr.html
435 ///
436 /// # Examples
437 ///
438 /// Creates a `CString`, pass ownership to an `extern` function (via raw pointer), then retake
439 /// ownership with `from_raw`:
440 ///
441 /// ```ignore (extern-declaration)
442 /// use cstr_core::CString;
443 /// use cstr_core::c_char;
444 ///
445 /// extern {
446 /// fn some_extern_function(s: *mut c_char);
447 /// }
448 ///
449 /// let c_string = CString::new("Hello!").expect("CString::new failed");
450 /// let raw = c_string.into_raw();
451 /// unsafe {
452 /// some_extern_function(raw);
453 /// let c_string = CString::from_raw(raw);
454 /// }
455 /// ```
456 pub unsafe fn from_raw(ptr: *mut c_char) -> CString {
457 let len = strlen(ptr) + 1; // Including the NUL byte
458 let slice = slice::from_raw_parts_mut(ptr, len as usize);
459 CString {
460 inner: Box::from_raw(slice as *mut [c_char] as *mut [u8]),
461 }
462 }
463
464 /// Consumes the `CString` and transfers ownership of the string to a C caller.
465 ///
466 /// The pointer which this function returns must be returned to Rust and reconstituted using
467 /// [`from_raw`] to be properly deallocated. Specifically, one
468 /// should *not* use the standard C `free()` function to deallocate
469 /// this string.
470 ///
471 /// Failure to call [`from_raw`] will lead to a memory leak.
472 ///
473 /// [`from_raw`]: #method.from_raw
474 ///
475 /// # Examples
476 ///
477 /// ```
478 /// use cstr_core::CString;
479 ///
480 /// let c_string = CString::new("foo").expect("CString::new failed");
481 ///
482 /// let ptr = c_string.into_raw();
483 ///
484 /// unsafe {
485 /// assert_eq!(b'f', *ptr as u8);
486 /// assert_eq!(b'o', *ptr.offset(1) as u8);
487 /// assert_eq!(b'o', *ptr.offset(2) as u8);
488 /// assert_eq!(b'\0', *ptr.offset(3) as u8);
489 ///
490 /// // retake pointer to free memory
491 /// let _ = CString::from_raw(ptr);
492 /// }
493 /// ```
494 #[inline]
495 pub fn into_raw(self) -> *mut c_char {
496 Box::into_raw(self.into_inner()) as *mut c_char
497 }
498 /// Converts the `CString` into a [`String`] if it contains valid UTF-8 data.
499 ///
500 /// On failure, ownership of the original `CString` is returned.
501 ///
502 /// # Examples
503 ///
504 /// ```
505 /// use cstr_core::CString;
506 ///
507 /// let valid_utf8 = vec![b'f', b'o', b'o'];
508 /// let cstring = CString::new(valid_utf8).expect("CString::new failed");
509 /// assert_eq!(cstring.into_string().expect("into_string() call failed"), "foo");
510 ///
511 /// let invalid_utf8 = vec![b'f', 0xff, b'o', b'o'];
512 /// let cstring = CString::new(invalid_utf8).expect("CString::new failed");
513 /// let err = cstring.into_string().err().expect("into_string().err() failed");
514 /// assert_eq!(err.utf8_error().valid_up_to(), 1);
515 /// ```
516 pub fn into_string(self) -> Result<String, IntoStringError> {
517 String::from_utf8(self.into_bytes()).map_err(|e| IntoStringError {
518 error: e.utf8_error(),
519 inner: unsafe { CString::from_vec_unchecked(e.into_bytes()) },
520 })
521 }
522
523 /// Consumes the `CString` and returns the underlying byte buffer.
524 ///
525 /// The returned buffer does **not** contain the trailing nul
526 /// terminator, and it is guaranteed to not have any interior nul
527 /// bytes.
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// use cstr_core::CString;
533 ///
534 /// let c_string = CString::new("foo").expect("CString::new failed");
535 /// let bytes = c_string.into_bytes();
536 /// assert_eq!(bytes, vec![b'f', b'o', b'o']);
537 /// ```
538 pub fn into_bytes(self) -> Vec<u8> {
539 let mut vec = self.into_inner().into_vec();
540 let _nul = vec.pop();
541 debug_assert_eq!(_nul, Some(0u8));
542 vec
543 }
544
545 /// Equivalent to the [`into_bytes`] function except that the returned vector
546 /// includes the trailing nul terminator.
547 ///
548 /// [`into_bytes`]: #method.into_bytes
549 ///
550 /// # Examples
551 ///
552 /// ```
553 /// use cstr_core::CString;
554 ///
555 /// let c_string = CString::new("foo").expect("CString::new failed");
556 /// let bytes = c_string.into_bytes_with_nul();
557 /// assert_eq!(bytes, vec![b'f', b'o', b'o', b'\0']);
558 /// ```
559 pub fn into_bytes_with_nul(self) -> Vec<u8> {
560 self.into_inner().into_vec()
561 }
562
563 /// Returns the contents of this `CString` as a slice of bytes.
564 ///
565 /// The returned slice does **not** contain the trailing nul
566 /// terminator, and it is guaranteed to not have any interior nul
567 /// bytes. If you need the nul terminator, use
568 /// [`as_bytes_with_nul`] instead.
569 ///
570 /// [`as_bytes_with_nul`]: #method.as_bytes_with_nul
571 ///
572 /// # Examples
573 ///
574 /// ```
575 /// use cstr_core::CString;
576 ///
577 /// let c_string = CString::new("foo").expect("CString::new failed");
578 /// let bytes = c_string.as_bytes();
579 /// assert_eq!(bytes, &[b'f', b'o', b'o']);
580 /// ```
581 #[inline]
582 pub fn as_bytes(&self) -> &[u8] {
583 &self.inner[..self.inner.len() - 1]
584 }
585
586 /// Equivalent to the [`as_bytes`] function except that the returned slice
587 /// includes the trailing nul terminator.
588 ///
589 /// [`as_bytes`]: #method.as_bytes
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// use cstr_core::CString;
595 ///
596 /// let c_string = CString::new("foo").expect("CString::new failed");
597 /// let bytes = c_string.as_bytes_with_nul();
598 /// assert_eq!(bytes, &[b'f', b'o', b'o', b'\0']);
599 /// ```
600 #[inline]
601 pub fn as_bytes_with_nul(&self) -> &[u8] {
602 &self.inner
603 }
604
605 /// Extracts a [`CStr`] slice containing the entire string.
606 ///
607 /// [`CStr`]: struct.CStr.html
608 ///
609 /// # Examples
610 ///
611 /// ```
612 /// use cstr_core::{CString, CStr};
613 ///
614 /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
615 /// let cstr = c_string.as_c_str();
616 /// assert_eq!(cstr,
617 /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"));
618 /// ```
619 #[inline]
620 pub fn as_c_str(&self) -> &CStr {
621 &*self
622 }
623
624 /// Converts this `CString` into a boxed [`CStr`].
625 ///
626 /// [`CStr`]: struct.CStr.html
627 ///
628 /// # Examples
629 ///
630 /// ```
631 /// use cstr_core::{CString, CStr};
632 ///
633 /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
634 /// let boxed = c_string.into_boxed_c_str();
635 /// assert_eq!(&*boxed,
636 /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"));
637 /// ```
638 pub fn into_boxed_c_str(self) -> Box<CStr> {
639 unsafe { Box::from_raw(Box::into_raw(self.into_inner()) as *mut CStr) }
640 }
641
642 /// Bypass "move out of struct which implements [`Drop`] trait" restriction.
643 fn into_inner(self) -> Box<[u8]> {
644 // Rationale: `mem::forget(self)` invalidates the previous call to `ptr::read(&self.inner)`
645 // so we use `ManuallyDrop` to ensure `self` is not dropped.
646 // Then we can return the box directly without invalidating it.
647 // See https://github.com/rust-lang/rust/issues/62553.
648 let this = mem::ManuallyDrop::new(self);
649 unsafe { ptr::read(&this.inner) }
650 }
651}
652
653// Turns this `CString` into an empty string to prevent
654// memory unsafe code from working by accident. Inline
655// to prevent LLVM from optimizing it away in debug builds.
656#[cfg(feature = "alloc")]
657impl Drop for CString {
658 #[inline]
659 fn drop(&mut self) {
660 unsafe {
661 *self.inner.get_unchecked_mut(0) = 0;
662 }
663 }
664}
665
666#[cfg(feature = "alloc")]
667impl ops::Deref for CString {
668 type Target = CStr;
669
670 #[inline]
671 fn deref(&self) -> &CStr {
672 unsafe { CStr::from_bytes_with_nul_unchecked(self.as_bytes_with_nul()) }
673 }
674}
675
676#[cfg(feature = "alloc")]
677impl fmt::Debug for CString {
678 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
679 fmt::Debug::fmt(&**self, f)
680 }
681}
682
683#[cfg(feature = "alloc")]
684impl From<CString> for Vec<u8> {
685 /// Converts a [`CString`] into a [`Vec`]`<u8>`.
686 ///
687 /// The conversion consumes the [`CString`], and removes the terminating NUL byte.
688 #[inline]
689 fn from(s: CString) -> Vec<u8> {
690 s.into_bytes()
691 }
692}
693
694impl fmt::Debug for CStr {
695 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
696 write!(f, "\"")?;
697 for byte in self
698 .to_bytes()
699 .iter()
700 .flat_map(|&b| ascii::escape_default(b))
701 {
702 f.write_char(byte as char)?;
703 }
704 write!(f, "\"")
705 }
706}
707
708impl<'a> Default for &'a CStr {
709 fn default() -> &'a CStr {
710 const SLICE: &[c_char] = &[0];
711 unsafe { CStr::from_ptr(SLICE.as_ptr()) }
712 }
713}
714
715#[cfg(feature = "alloc")]
716impl Default for CString {
717 /// Creates an empty `CString`.
718 fn default() -> CString {
719 let a: &CStr = Default::default();
720 a.to_owned()
721 }
722}
723
724#[cfg(feature = "alloc")]
725impl Borrow<CStr> for CString {
726 #[inline]
727 fn borrow(&self) -> &CStr {
728 self
729 }
730}
731
732#[cfg(feature = "alloc")]
733impl<'a> From<Cow<'a, CStr>> for CString {
734 #[inline]
735 fn from(s: Cow<'a, CStr>) -> Self {
736 s.into_owned()
737 }
738}
739
740#[cfg(feature = "alloc")]
741impl From<&CStr> for Box<CStr> {
742 fn from(s: &CStr) -> Box<CStr> {
743 let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
744 unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) }
745 }
746}
747
748#[cfg(feature = "alloc")]
749impl From<Box<CStr>> for CString {
750 /// Converts a [`Box`]`<CStr>` into a [`CString`] without copying or allocating.
751 #[inline]
752 fn from(s: Box<CStr>) -> CString {
753 s.into_c_string()
754 }
755}
756
757#[cfg(feature = "alloc")]
758impl Clone for Box<CStr> {
759 #[inline]
760 fn clone(&self) -> Self {
761 (**self).into()
762 }
763}
764
765#[cfg(feature = "alloc")]
766impl From<CString> for Box<CStr> {
767 /// Converts a [`CString`] into a [`Box`]`<CStr>` without copying or allocating.
768 #[inline]
769 fn from(s: CString) -> Box<CStr> {
770 s.into_boxed_c_str()
771 }
772}
773
774#[cfg(feature = "alloc")]
775impl<'a> From<CString> for Cow<'a, CStr> {
776 #[inline]
777 fn from(s: CString) -> Cow<'a, CStr> {
778 Cow::Owned(s)
779 }
780}
781
782#[cfg(feature = "alloc")]
783impl<'a> From<&'a CStr> for Cow<'a, CStr> {
784 #[inline]
785 fn from(s: &'a CStr) -> Cow<'a, CStr> {
786 Cow::Borrowed(s)
787 }
788}
789
790#[cfg(feature = "alloc")]
791impl<'a> From<&'a CString> for Cow<'a, CStr> {
792 #[inline]
793 fn from(s: &'a CString) -> Cow<'a, CStr> {
794 Cow::Borrowed(s.as_c_str())
795 }
796}
797
798#[cfg(feature = "alloc")]
799#[cfg(feature = "arc")]
800impl From<CString> for Arc<CStr> {
801 #[inline]
802 fn from(s: CString) -> Arc<CStr> {
803 let arc: Arc<[u8]> = Arc::from(s.into_inner());
804 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) }
805 }
806}
807
808#[cfg(feature = "alloc")]
809#[cfg(feature = "arc")]
810impl<'a> From<&'a CStr> for Arc<CStr> {
811 #[inline]
812 fn from(s: &CStr) -> Arc<CStr> {
813 let arc: Arc<[u8]> = Arc::from(s.to_bytes_with_nul());
814 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) }
815 }
816}
817
818#[cfg(feature = "alloc")]
819impl From<CString> for Rc<CStr> {
820 #[inline]
821 fn from(s: CString) -> Rc<CStr> {
822 let rc: Rc<[u8]> = Rc::from(s.into_inner());
823 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) }
824 }
825}
826
827#[cfg(feature = "alloc")]
828impl<'a> From<&'a CStr> for Rc<CStr> {
829 #[inline]
830 fn from(s: &CStr) -> Rc<CStr> {
831 let rc: Rc<[u8]> = Rc::from(s.to_bytes_with_nul());
832 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) }
833 }
834}
835
836#[cfg(feature = "alloc")]
837impl Default for Box<CStr> {
838 fn default() -> Box<CStr> {
839 let boxed: Box<[u8]> = Box::from([0]);
840 unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) }
841 }
842}
843
844#[cfg(feature = "std")]
845use std::ffi::{CStr as StdCStr, CString as StdCString};
846
847#[cfg(feature = "std")]
848impl From<CString> for StdCString {
849 #[inline]
850 fn from(s: CString) -> StdCString {
851 unsafe { StdCString::from_vec_unchecked(s.into_bytes()) }
852 }
853}
854
855#[cfg(feature = "std")]
856impl<'a> From<&'a CStr> for &'a StdCStr {
857 #[inline]
858 fn from(s: &'a CStr) -> &'a StdCStr {
859 s.as_ref()
860 }
861}
862
863#[cfg(feature = "std")]
864impl From<StdCString> for CString {
865 #[inline]
866 fn from(s: StdCString) -> CString {
867 unsafe { CString::from_vec_unchecked(s.into_bytes()) }
868 }
869}
870
871#[cfg(feature = "std")]
872impl<'a> From<&'a StdCStr> for &'a CStr {
873 #[inline]
874 fn from(s: &'a StdCStr) -> &'a CStr {
875 unsafe { CStr::from_bytes_with_nul_unchecked(s.to_bytes_with_nul()) }
876 }
877}
878
879#[cfg(feature = "std")]
880impl AsRef<StdCStr> for CString {
881 #[inline]
882 fn as_ref(&self) -> &StdCStr {
883 AsRef::<CStr>::as_ref(self).as_ref()
884 }
885}
886
887#[cfg(feature = "std")]
888impl Borrow<StdCStr> for CString {
889 #[inline]
890 fn borrow(&self) -> &StdCStr {
891 self.as_ref()
892 }
893}
894
895#[cfg(feature = "std")]
896impl AsRef<StdCStr> for CStr {
897 #[inline]
898 fn as_ref(&self) -> &StdCStr {
899 unsafe { StdCStr::from_bytes_with_nul_unchecked(self.to_bytes_with_nul()) }
900 }
901}
902
903#[cfg(feature = "alloc")]
904impl NulError {
905 /// Returns the position of the nul byte in the slice that was provided to
906 /// [`CString::new`].
907 ///
908 /// [`CString::new`]: struct.CString.html#method.new
909 ///
910 /// # Examples
911 ///
912 /// ```
913 /// use cstr_core::CString;
914 ///
915 /// let nul_error = CString::new("foo\0bar").unwrap_err();
916 /// assert_eq!(nul_error.nul_position(), 3);
917 ///
918 /// let nul_error = CString::new("foo bar\0").unwrap_err();
919 /// assert_eq!(nul_error.nul_position(), 7);
920 /// ```
921 pub fn nul_position(&self) -> usize {
922 self.0
923 }
924
925 /// Consumes this error, returning the underlying vector of bytes which
926 /// generated the error in the first place.
927 ///
928 /// # Examples
929 ///
930 /// ```
931 /// use cstr_core::CString;
932 ///
933 /// let nul_error = CString::new("foo\0bar").unwrap_err();
934 /// assert_eq!(nul_error.into_vec(), b"foo\0bar");
935 /// ```
936 pub fn into_vec(self) -> Vec<u8> {
937 self.1
938 }
939}
940
941#[cfg(feature = "alloc")]
942impl fmt::Display for NulError {
943 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
944 write!(f, "nul byte found in provided data at position: {}", self.0)
945 }
946}
947
948impl fmt::Display for FromBytesWithNulError {
949 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
950 let description = match self.kind {
951 FromBytesWithNulErrorKind::InteriorNul(..) => {
952 "data provided contains an interior nul byte"
953 }
954 FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
955 };
956 f.write_str(description)?;
957 if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
958 write!(f, " at byte pos {}", pos)?;
959 }
960 Ok(())
961 }
962}
963
964#[cfg(feature = "alloc")]
965impl IntoStringError {
966 /// Consumes this error, returning original [`CString`] which generated the
967 /// error.
968 ///
969 /// [`CString`]: struct.CString.html
970 pub fn into_cstring(self) -> CString {
971 self.inner
972 }
973
974 /// Access the underlying UTF-8 error that was the cause of this error.
975 pub fn utf8_error(&self) -> Utf8Error {
976 self.error
977 }
978}
979
980#[cfg(feature = "alloc")]
981impl fmt::Display for IntoStringError {
982 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
983 "C string contained non-utf8 bytes".fmt(f)
984 }
985}
986
987impl CStr {
988 /// Wraps a raw C string with a safe C string wrapper.
989 ///
990 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
991 /// allows inspection and interoperation of non-owned C strings. The total
992 /// size of the raw C string must be smaller than `isize::MAX` **bytes**
993 /// in memory due to calling the `slice::from_raw_parts` function.
994 /// This method is unsafe for a number of reasons:
995 ///
996 /// * There is no guarantee to the validity of `ptr`.
997 /// * The returned lifetime is not guaranteed to be the actual lifetime of
998 /// `ptr`.
999 /// * There is no guarantee that the memory pointed to by `ptr` contains a
1000 /// valid nul terminator byte at the end of the string.
1001 /// * It is not guaranteed that the memory pointed by `ptr` won't change
1002 /// before the `CStr` has been destroyed.
1003 ///
1004 /// > **Note**: This operation is intended to be a 0-cost cast but it is
1005 /// > currently implemented with an up-front calculation of the length of
1006 /// > the string. This is not guaranteed to always be the case.
1007 ///
1008 /// # Examples
1009 ///
1010 /// ```ignore (extern-declaration)
1011 /// # fn main() {
1012 /// use cstr_core::CStr;
1013 /// use cstr_core::c_char;
1014 ///
1015 /// extern {
1016 /// fn my_string() -> *const c_char;
1017 /// }
1018 ///
1019 /// unsafe {
1020 /// let slice = CStr::from_ptr(my_string());
1021 /// println!("string returned: {}", slice.to_str().unwrap());
1022 /// }
1023 /// # }
1024 /// ```
1025 pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
1026 let len = strlen(ptr);
1027 let ptr = ptr as *const u8;
1028 CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1))
1029 }
1030
1031 /// Creates a C string wrapper from a byte slice.
1032 ///
1033 /// This function will cast the provided `bytes` to a `CStr`
1034 /// wrapper after ensuring that the byte slice is nul-terminated
1035 /// and does not contain any interior nul bytes.
1036 ///
1037 /// # Examples
1038 ///
1039 /// ```
1040 /// use cstr_core::CStr;
1041 ///
1042 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
1043 /// assert!(cstr.is_ok());
1044 /// ```
1045 ///
1046 /// Creating a `CStr` without a trailing nul terminator is an error:
1047 ///
1048 /// ```
1049 /// use cstr_core::CStr;
1050 ///
1051 /// let cstr = CStr::from_bytes_with_nul(b"hello");
1052 /// assert!(cstr.is_err());
1053 /// ```
1054 ///
1055 /// Creating a `CStr` with an interior nul byte is an error:
1056 ///
1057 /// ```
1058 /// use cstr_core::CStr;
1059 ///
1060 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
1061 /// assert!(cstr.is_err());
1062 /// ```
1063 #[cfg(feature = "nightly")]
1064 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&CStr, FromBytesWithNulError> {
1065 let nul_pos = memchr(0, bytes);
1066 if let Some(nul_pos) = nul_pos {
1067 if nul_pos + 1 != bytes.len() {
1068 return Err(FromBytesWithNulError::interior_nul(nul_pos));
1069 }
1070 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(bytes) })
1071 } else {
1072 Err(FromBytesWithNulError::not_nul_terminated())
1073 }
1074 }
1075
1076 /// Creates a C string wrapper from a byte slice.
1077 ///
1078 /// This function will cast the provided `bytes` to a `CStr`
1079 /// wrapper after ensuring that the byte slice is nul-terminated
1080 /// and does not contain any interior nul bytes.
1081 ///
1082 /// # Examples
1083 ///
1084 /// ```
1085 /// use cstr_core::CStr;
1086 ///
1087 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
1088 /// assert!(cstr.is_ok());
1089 /// ```
1090 ///
1091 /// Creating a `CStr` without a trailing nul terminator is an error:
1092 ///
1093 /// ```
1094 /// use cstr_core::CStr;
1095 ///
1096 /// let cstr = CStr::from_bytes_with_nul(b"hello");
1097 /// assert!(cstr.is_err());
1098 /// ```
1099 ///
1100 /// Creating a `CStr` with an interior nul byte is an error:
1101 ///
1102 /// ```
1103 /// use cstr_core::CStr;
1104 ///
1105 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
1106 /// assert!(cstr.is_err());
1107 /// ```
1108 #[cfg(not(feature = "nightly"))]
1109 pub fn from_bytes_with_nul(bytes: &[u8]) -> Result<&CStr, FromBytesWithNulError> {
1110 let nul_pos = memchr(0, bytes);
1111 if let Some(nul_pos) = nul_pos {
1112 if nul_pos + 1 != bytes.len() {
1113 return Err(FromBytesWithNulError::interior_nul(nul_pos));
1114 }
1115 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(bytes) })
1116 } else {
1117 Err(FromBytesWithNulError::not_nul_terminated())
1118 }
1119 }
1120
1121 /// Unsafely creates a C string wrapper from a byte slice.
1122 ///
1123 /// This function will cast the provided `bytes` to a `CStr` wrapper without
1124 /// performing any sanity checks. The provided slice **must** be nul-terminated
1125 /// and not contain any interior nul bytes.
1126 ///
1127 /// # Examples
1128 ///
1129 /// ```
1130 /// use cstr_core::{CStr, CString};
1131 ///
1132 /// unsafe {
1133 /// let cstring = CString::new("hello").expect("CString::new failed");
1134 /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
1135 /// assert_eq!(cstr, &*cstring);
1136 /// }
1137 /// ```
1138 #[cfg(feature = "nightly")]
1139 #[inline]
1140 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
1141 &*(bytes as *const [u8] as *const CStr)
1142 }
1143
1144 /// Unsafely creates a C string wrapper from a byte slice.
1145 ///
1146 /// This function will cast the provided `bytes` to a `CStr` wrapper without
1147 /// performing any sanity checks. The provided slice **must** be nul-terminated
1148 /// and not contain any interior nul bytes.
1149 ///
1150 /// # Examples
1151 ///
1152 /// ```
1153 /// use cstr_core::{CStr, CString};
1154 ///
1155 /// unsafe {
1156 /// let cstring = CString::new("hello").expect("CString::new failed");
1157 /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
1158 /// assert_eq!(cstr, &*cstring);
1159 /// }
1160 /// ```
1161 #[cfg(not(feature = "nightly"))]
1162 #[inline]
1163 pub unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
1164 &*(bytes as *const [u8] as *const CStr)
1165 }
1166
1167 /// Returns the inner pointer to this C string.
1168 ///
1169 /// The returned pointer will be valid for as long as `self` is, and points
1170 /// to a contiguous region of memory terminated with a 0 byte to represent
1171 /// the end of the string.
1172 ///
1173 /// **WARNING**
1174 ///
1175 /// The returned pointer is read-only; writing to it (including passing it
1176 /// to C code that writes to it) causes undefined behavior.
1177 ///
1178 /// It is your responsibility to make sure that the underlying memory is not
1179 /// freed too early. For example, the following code will cause undefined
1180 /// behavior when `ptr` is used inside the `unsafe` block:
1181 ///
1182 /// ```no_run
1183 /// # #![allow(unused_must_use)]
1184 /// use cstr_core::CString;
1185 ///
1186 /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
1187 /// unsafe {
1188 /// // `ptr` is dangling
1189 /// *ptr;
1190 /// }
1191 /// ```
1192 ///
1193 /// This happens because the pointer returned by `as_ptr` does not carry any
1194 /// lifetime information and the [`CString`] is deallocated immediately after
1195 /// the `CString::new("Hello").expect("CString::new failed").as_ptr()` expression is evaluated.
1196 /// To fix the problem, bind the `CString` to a local variable:
1197 ///
1198 /// ```no_run
1199 /// # #![allow(unused_must_use)]
1200 /// use cstr_core::CString;
1201 ///
1202 /// let hello = CString::new("Hello").expect("CString::new failed");
1203 /// let ptr = hello.as_ptr();
1204 /// unsafe {
1205 /// // `ptr` is valid because `hello` is in scope
1206 /// *ptr;
1207 /// }
1208 /// ```
1209 ///
1210 /// This way, the lifetime of the `CString` in `hello` encompasses
1211 /// the lifetime of `ptr` and the `unsafe` block.
1212 ///
1213 /// [`CString`]: struct.CString.html
1214 #[inline]
1215 pub const fn as_ptr(&self) -> *const c_char {
1216 self.inner.as_ptr()
1217 }
1218
1219 /// Converts this C string to a byte slice.
1220 ///
1221 /// The returned slice will **not** contain the trailing nul terminator that this C
1222 /// string has.
1223 ///
1224 /// > **Note**: This method is currently implemented as a constant-time
1225 /// > cast, but it is planned to alter its definition in the future to
1226 /// > perform the length calculation whenever this method is called.
1227 ///
1228 /// # Examples
1229 ///
1230 /// ```
1231 /// use cstr_core::CStr;
1232 ///
1233 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1234 /// assert_eq!(cstr.to_bytes(), b"foo");
1235 /// ```
1236 #[inline]
1237 #[cfg(not(feature = "nightly"))]
1238 pub fn to_bytes(&self) -> &[u8] {
1239 let bytes = self.to_bytes_with_nul();
1240 &bytes[..bytes.len() - 1]
1241 }
1242
1243 /// Converts this C string to a byte slice.
1244 ///
1245 /// The returned slice will **not** contain the trailing nul terminator that this C
1246 /// string has.
1247 ///
1248 /// > **Note**: This method is currently implemented as a constant-time
1249 /// > cast, but it is planned to alter its definition in the future to
1250 /// > perform the length calculation whenever this method is called.
1251 ///
1252 /// # Examples
1253 ///
1254 /// ```
1255 /// use cstr_core::CStr;
1256 ///
1257 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1258 /// assert_eq!(cstr.to_bytes(), b"foo");
1259 /// ```
1260 #[inline]
1261 #[cfg(feature = "nightly")]
1262 pub const fn to_bytes(&self) -> &[u8] {
1263 let bytes = self.to_bytes_with_nul();
1264 // unsafe: This is just like [:len - 1] (but const usable), and any underflow of the `- 1`
1265 // is avoided by the type's guarantee that there is a trailing nul byte.
1266 unsafe {
1267 slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1)
1268 }
1269 }
1270
1271 /// Converts this C string to a byte slice containing the trailing 0 byte.
1272 ///
1273 /// This function is the equivalent of [`to_bytes`] except that it will retain
1274 /// the trailing nul terminator instead of chopping it off.
1275 ///
1276 /// > **Note**: This method is currently implemented as a 0-cost cast, but
1277 /// > it is planned to alter its definition in the future to perform the
1278 /// > length calculation whenever this method is called.
1279 ///
1280 /// [`to_bytes`]: #method.to_bytes
1281 ///
1282 /// # Examples
1283 ///
1284 /// ```
1285 /// use cstr_core::CStr;
1286 ///
1287 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1288 /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
1289 /// ```
1290 #[inline]
1291 #[cfg(feature = "nightly")]
1292 pub const fn to_bytes_with_nul(&self) -> &[u8] {
1293 unsafe { &*(&self.inner as *const [c_char] as *const [u8]) }
1294 }
1295
1296 /// Converts this C string to a byte slice containing the trailing 0 byte.
1297 ///
1298 /// This function is the equivalent of [`to_bytes`] except that it will retain
1299 /// the trailing nul terminator instead of chopping it off.
1300 ///
1301 /// > **Note**: This method is currently implemented as a 0-cost cast, but
1302 /// > it is planned to alter its definition in the future to perform the
1303 /// > length calculation whenever this method is called.
1304 ///
1305 /// [`to_bytes`]: #method.to_bytes
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// use cstr_core::CStr;
1311 ///
1312 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1313 /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
1314 /// ```
1315 #[inline]
1316 #[cfg(not(feature = "nightly"))]
1317 pub fn to_bytes_with_nul(&self) -> &[u8] {
1318 unsafe { &*(&self.inner as *const [c_char] as *const [u8]) }
1319 }
1320
1321 /// Yields a [`&str`] slice if the `CStr` contains valid UTF-8.
1322 ///
1323 /// If the contents of the `CStr` are valid UTF-8 data, this
1324 /// function will return the corresponding [`&str`] slice. Otherwise,
1325 /// it will return an error with details of where UTF-8 validation failed.
1326 ///
1327 /// # Examples
1328 ///
1329 /// ```
1330 /// use cstr_core::CStr;
1331 ///
1332 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1333 /// assert_eq!(cstr.to_str(), Ok("foo"));
1334 /// ```
1335 #[cfg(not(feature = "nightly"))]
1336 pub fn to_str(&self) -> Result<&str, Utf8Error> {
1337 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
1338 // instead of in `from_ptr()`, it may be worth considering if this should
1339 // be rewritten to do the UTF-8 check inline with the length calculation
1340 // instead of doing it afterwards.
1341 str::from_utf8(self.to_bytes())
1342 }
1343
1344 /// Yields a [`&str`] slice if the `CStr` contains valid UTF-8.
1345 ///
1346 /// If the contents of the `CStr` are valid UTF-8 data, this
1347 /// function will return the corresponding [`&str`] slice. Otherwise,
1348 /// it will return an error with details of where UTF-8 validation failed.
1349 ///
1350 /// # Examples
1351 ///
1352 /// ```
1353 /// use cstr_core::CStr;
1354 ///
1355 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
1356 /// assert_eq!(cstr.to_str(), Ok("foo"));
1357 /// ```
1358 #[cfg(feature = "nightly")]
1359 pub const fn to_str(&self) -> Result<&str, Utf8Error> {
1360 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
1361 // instead of in `from_ptr()`, it may be worth considering if this should
1362 // be rewritten to do the UTF-8 check inline with the length calculation
1363 // instead of doing it afterwards.
1364 str::from_utf8(self.to_bytes())
1365 }
1366
1367 /// Converts a `CStr` into a [`Cow`]`<`[`str`]`>`.
1368 ///
1369 /// If the contents of the `CStr` are valid UTF-8 data, this
1370 /// function will return a [`Cow`]`::`[`Borrowed`]`(`[`&str`]`)`
1371 /// with the corresponding [`&str`] slice. Otherwise, it will
1372 /// replace any invalid UTF-8 sequences with
1373 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD] and return a
1374 /// [`Cow`]`::`[`Owned`]`(`[`String`]`)` with the result.
1375 ///
1376 /// [`Borrowed`]: Cow::Borrowed
1377 /// [`Owned`]: Cow::Owned
1378 /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
1379 ///
1380 /// # Examples
1381 ///
1382 /// Calling `to_string_lossy` on a `CStr` containing valid UTF-8:
1383 ///
1384 /// ```
1385 /// use std::borrow::Cow;
1386 /// use cstr_core::CStr;
1387 ///
1388 /// let cstr = CStr::from_bytes_with_nul(b"Hello World\0")
1389 /// .expect("CStr::from_bytes_with_nul failed");
1390 /// assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));
1391 /// ```
1392 ///
1393 /// Calling `to_string_lossy` on a `CStr` containing invalid UTF-8:
1394 ///
1395 /// ```
1396 /// use std::borrow::Cow;
1397 /// use cstr_core::CStr;
1398 ///
1399 /// let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0")
1400 /// .expect("CStr::from_bytes_with_nul failed");
1401 /// assert_eq!(
1402 /// cstr.to_string_lossy(),
1403 /// Cow::Owned(String::from("Hello �World")) as Cow<'_, str>
1404 /// );
1405 /// ```
1406 #[cfg(feature = "alloc")]
1407 pub fn to_string_lossy(&self) -> Cow<'_, str> {
1408 String::from_utf8_lossy(self.to_bytes())
1409 }
1410
1411 /// Converts a [`Box`]`<CStr>` into a [`CString`] without copying or allocating.
1412 ///
1413 /// [`CString`]: struct.CString.html
1414 ///
1415 /// # Examples
1416 ///
1417 /// ```
1418 /// use cstr_core::CString;
1419 ///
1420 /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
1421 /// let boxed = c_string.into_boxed_c_str();
1422 /// assert_eq!(boxed.into_c_string(), CString::new("foo").expect("CString::new failed"));
1423 /// ```
1424 #[cfg(feature = "alloc")]
1425 pub fn into_c_string(self: Box<CStr>) -> CString {
1426 let raw = Box::into_raw(self) as *mut [u8];
1427 CString {
1428 inner: unsafe { Box::from_raw(raw) },
1429 }
1430 }
1431}
1432
1433impl PartialEq for CStr {
1434 fn eq(&self, other: &CStr) -> bool {
1435 self.to_bytes().eq(other.to_bytes())
1436 }
1437}
1438impl Eq for CStr {}
1439impl PartialOrd for CStr {
1440 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
1441 self.to_bytes().partial_cmp(&other.to_bytes())
1442 }
1443}
1444impl Ord for CStr {
1445 fn cmp(&self, other: &CStr) -> Ordering {
1446 self.to_bytes().cmp(&other.to_bytes())
1447 }
1448}
1449
1450#[cfg(feature = "alloc")]
1451impl ToOwned for CStr {
1452 type Owned = CString;
1453
1454 fn to_owned(&self) -> CString {
1455 CString {
1456 inner: self.to_bytes_with_nul().into(),
1457 }
1458 }
1459}
1460
1461#[cfg(feature = "alloc")]
1462impl From<&CStr> for CString {
1463 fn from(s: &CStr) -> CString {
1464 s.to_owned()
1465 }
1466}
1467
1468#[cfg(feature = "alloc")]
1469impl ops::Index<ops::RangeFull> for CString {
1470 type Output = CStr;
1471
1472 #[inline]
1473 fn index(&self, _index: ops::RangeFull) -> &CStr {
1474 self
1475 }
1476}
1477
1478impl AsRef<CStr> for CStr {
1479 #[inline]
1480 fn as_ref(&self) -> &CStr {
1481 self
1482 }
1483}
1484
1485#[cfg(feature = "alloc")]
1486impl AsRef<CStr> for CString {
1487 #[inline]
1488 fn as_ref(&self) -> &CStr {
1489 self
1490 }
1491}
1492
1493#[inline]
1494#[doc(hidden)]
1495pub const fn bytes_are_valid(bytes: &[u8]) -> bool {
1496 if bytes.len() == 0 || bytes[bytes.len() - 1] != 0 {
1497 return false;
1498 }
1499 let mut index = 0;
1500 // No for loops yet in const functions
1501 while index < bytes.len() - 1 {
1502 if bytes[index] == 0 {
1503 return false;
1504 }
1505 index += 1;
1506 }
1507 true
1508}
1509
1510/// Generate a [CStr] at compile time that is guaranteed to be correct. The given argument should be a string literal with no `\0` bytes.
1511///
1512/// This macro validates at compile time that the given string does not contain `\0` and automatically appends `\0`.
1513///
1514/// ```rust
1515/// let str: &cstr_core::CStr = cstr_core::cstr!("Hello world!");
1516/// assert_eq!("Hello world!", str.to_str().unwrap());
1517/// ```
1518///
1519/// **note**: if the string contains `\0` bytes, the error looks like:
1520/// ```bash
1521/// error[E0080]: evaluation of constant value failed
1522/// --> src/lib.rs:1358:29
1523/// |
1524/// 4 | let str: &cstr_core::CStr = cstr_core::cstr!("Hello \0world!");
1525/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ attempt to compute `0_usize - 1_usize`, which would overflow
1526/// |
1527/// = note: this error originates in the macro `cstr_core::cstr` (in Nightly builds, run with -Z macro-backtrace for more info)
1528/// ```
1529#[macro_export]
1530macro_rules! cstr {
1531 ($e:expr) => {{
1532 const STR: &[u8] = concat!($e, "\0").as_bytes();
1533 const STR_VALID: bool = $crate::bytes_are_valid(STR);
1534 let _ = [(); 0 - (!(STR_VALID) as usize)];
1535 unsafe {
1536 $crate::CStr::from_bytes_with_nul_unchecked(STR)
1537 }
1538 }}
1539}
1540
1541#[cfg(test)]
1542mod tests {
1543 use super::*;
1544 use std::borrow::Cow::{Borrowed, Owned};
1545 use std::collections::hash_map::DefaultHasher;
1546 use std::hash::{Hash, Hasher};
1547 use std::{format, vec};
1548
1549 #[test]
1550 fn c_to_rust() {
1551 let data = b"123\0";
1552 let ptr = data.as_ptr() as *const c_char;
1553 unsafe {
1554 assert_eq!(CStr::from_ptr(ptr).to_bytes(), b"123");
1555 assert_eq!(CStr::from_ptr(ptr).to_bytes_with_nul(), b"123\0");
1556 }
1557 }
1558
1559 #[test]
1560 fn simple() {
1561 let s = CString::new("1234").unwrap();
1562 assert_eq!(s.as_bytes(), b"1234");
1563 assert_eq!(s.as_bytes_with_nul(), b"1234\0");
1564 }
1565
1566 #[test]
1567 fn build_with_zero1() {
1568 assert!(CString::new(&b"\0"[..]).is_err());
1569 }
1570 #[test]
1571 fn build_with_zero2() {
1572 assert!(CString::new(vec![0]).is_err());
1573 }
1574
1575 #[test]
1576 fn build_with_zero3() {
1577 unsafe {
1578 let s = CString::from_vec_unchecked(vec![0]);
1579 assert_eq!(s.as_bytes(), b"\0");
1580 }
1581 }
1582
1583 #[test]
1584 fn formatted() {
1585 let s = CString::new(&b"abc\x01\x02\n\xE2\x80\xA6\xFF"[..]).unwrap();
1586 assert_eq!(format!("{:?}", s), r#""abc\x01\x02\n\xe2\x80\xa6\xff""#);
1587 }
1588
1589 #[test]
1590 fn borrowed() {
1591 unsafe {
1592 let s = CStr::from_ptr(b"12\0".as_ptr() as *const _);
1593 assert_eq!(s.to_bytes(), b"12");
1594 assert_eq!(s.to_bytes_with_nul(), b"12\0");
1595 }
1596 }
1597
1598 #[test]
1599 fn to_str() {
1600 let data = b"123\xE2\x80\xA6\0";
1601 let ptr = data.as_ptr() as *const c_char;
1602 unsafe {
1603 assert_eq!(CStr::from_ptr(ptr).to_str(), Ok("123…"));
1604 assert_eq!(CStr::from_ptr(ptr).to_string_lossy(), Borrowed("123…"));
1605 }
1606 let data = b"123\xE2\0";
1607 let ptr = data.as_ptr() as *const c_char;
1608 unsafe {
1609 assert!(CStr::from_ptr(ptr).to_str().is_err());
1610 assert_eq!(
1611 CStr::from_ptr(ptr).to_string_lossy(),
1612 Owned::<str>(format!("123\u{FFFD}"))
1613 );
1614 }
1615 }
1616
1617 #[test]
1618 fn to_owned() {
1619 let data = b"123\0";
1620 let ptr = data.as_ptr() as *const c_char;
1621
1622 let owned = unsafe { CStr::from_ptr(ptr).to_owned() };
1623 assert_eq!(owned.as_bytes_with_nul(), data);
1624 }
1625
1626 #[test]
1627 fn equal_hash() {
1628 let data = b"123\xE2\xFA\xA6\0";
1629 let ptr = data.as_ptr() as *const c_char;
1630 let cstr: &'static CStr = unsafe { CStr::from_ptr(ptr) };
1631
1632 let mut s = DefaultHasher::new();
1633 cstr.hash(&mut s);
1634 let cstr_hash = s.finish();
1635 let mut s = DefaultHasher::new();
1636 CString::new(&data[..data.len() - 1]).unwrap().hash(&mut s);
1637 let cstring_hash = s.finish();
1638
1639 assert_eq!(cstr_hash, cstring_hash);
1640 }
1641
1642 #[test]
1643 fn from_bytes_with_nul() {
1644 let data = b"123\0";
1645 let cstr = CStr::from_bytes_with_nul(data);
1646 assert_eq!(cstr.map(CStr::to_bytes), Ok(&b"123"[..]));
1647 let cstr = CStr::from_bytes_with_nul(data);
1648 assert_eq!(cstr.map(CStr::to_bytes_with_nul), Ok(&b"123\0"[..]));
1649
1650 unsafe {
1651 let cstr = CStr::from_bytes_with_nul(data);
1652 let cstr_unchecked = CStr::from_bytes_with_nul_unchecked(data);
1653 assert_eq!(cstr, Ok(cstr_unchecked));
1654 }
1655 }
1656
1657 #[test]
1658 fn from_bytes_with_nul_unterminated() {
1659 let data = b"123";
1660 let cstr = CStr::from_bytes_with_nul(data);
1661 assert!(cstr.is_err());
1662 }
1663
1664 #[test]
1665 fn from_bytes_with_nul_interior() {
1666 let data = b"1\023\0";
1667 let cstr = CStr::from_bytes_with_nul(data);
1668 assert!(cstr.is_err());
1669 }
1670
1671 #[test]
1672 fn into_boxed() {
1673 let orig: &[u8] = b"Hello, world!\0";
1674 let cstr = CStr::from_bytes_with_nul(orig).unwrap();
1675 let boxed: Box<CStr> = Box::from(cstr);
1676 let cstring = cstr.to_owned().into_boxed_c_str().into_c_string();
1677 assert_eq!(cstr, &*boxed);
1678 assert_eq!(&*boxed, &*cstring);
1679 assert_eq!(&*cstring, cstr);
1680 }
1681
1682 #[test]
1683 fn boxed_default() {
1684 let boxed = <Box<CStr>>::default();
1685 assert_eq!(boxed.to_bytes_with_nul(), &[0]);
1686 }
1687
1688 #[test]
1689 #[cfg(feature = "alloc")]
1690 #[cfg(feature = "arc")]
1691 fn into_rc() {
1692 let orig: &[u8] = b"Hello, world!\0";
1693 let cstr = CStr::from_bytes_with_nul(orig).unwrap();
1694 let rc: Rc<CStr> = Rc::from(cstr);
1695 let arc: Arc<CStr> = Arc::from(cstr);
1696
1697 assert_eq!(&*rc, cstr);
1698 assert_eq!(&*arc, cstr);
1699
1700 let rc2: Rc<CStr> = Rc::from(cstr.to_owned());
1701 let arc2: Arc<CStr> = Arc::from(cstr.to_owned());
1702
1703 assert_eq!(&*rc2, cstr);
1704 assert_eq!(&*arc2, cstr);
1705 }
1706
1707 #[test]
1708 #[cfg(feature = "nightly")]
1709 fn const_cstr() {
1710 const TESTING_CSTR: &CStr =
1711 unsafe { CStr::from_bytes_with_nul_unchecked(b"Hello world!\0") };
1712 let _ = TESTING_CSTR.as_ptr();
1713 }
1714}