1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use super::{
    element::Element,
    iter::{select, Select},
    node::{Node, NodeData, NodeId},
    parser,
    selectors::ParseError,
    serializer::serialize_to,
    Specificity,
};
use crate::{hasher::BuildNoHashHasher, InlineError};
use html5ever::local_name;
use indexmap::IndexMap;
use std::{io::Write, iter::successors};

/// HTML document representation.
///
/// A `Document` holds a collection of nodes, with each node representing an HTML element.
/// Nodes are interconnected to form a tree-like structure, mimicking the HTML DOM tree.
/// The struct also keeps track of nodes that contain CSS styles or refer to CSS stylesheets.
///
/// Here is an example of how nodes within a `Document` could be arranged:
///
/// ```text
///                    Document
///                       ↓
///                      [N1]
///                     /   \
///                    /     \
///                   /       \
///                  /         \
///                 /           \
///               [N2]<->[N3]<->[N4]
///               /  \          /   \
///              /    \        /     \
///            [N5]<->[N6]   [N7]<->[N8]
/// ```
///
/// Each Node within the `Document` is interconnected with its siblings, and has a parent-child
/// relationship with its descendants.
#[derive(Debug)]
pub(crate) struct Document {
    pub(crate) nodes: Vec<Node>,
    /// Ids of `style` nodes.
    styles: Vec<NodeId>,
    /// Ids of `link` nodes, specifically those with the `rel` attribute value set as `stylesheet`.
    /// They represent the locations (URLs) of all linked stylesheet resources in the document.
    linked_stylesheets: Vec<NodeId>,
}

impl Document {
    pub(crate) fn parse_with_options(bytes: &[u8], preallocate_node_capacity: usize) -> Document {
        parser::parse_with_options(bytes, preallocate_node_capacity)
    }

    pub(super) fn with_capacity(capacity: usize) -> Self {
        // Dummy node at index 0 so that other indices fit in NonZero
        let mut nodes = vec![Node::new(NodeData::Document), Node::new(NodeData::Document)];
        // Usually there are a lot of nodes, hence, reserve some space for them
        nodes.reserve(capacity);
        Document {
            nodes,
            styles: Vec::new(),
            linked_stylesheets: Vec::new(),
        }
    }

    #[inline]
    pub(super) fn as_element(&self, node_id: NodeId) -> Option<Element<'_>> {
        if let NodeData::Element { element, .. } = &self[node_id].data {
            Some(Element::new(self, node_id, element))
        } else {
            None
        }
    }

    /// Add a new `style` element node.
    pub(super) fn add_style(&mut self, node: NodeId) {
        self.styles.push(node);
    }

    /// Iterator over blocks of CSS defined inside `style` tags.
    pub(crate) fn styles(&self) -> impl Iterator<Item = &str> + '_ {
        self.styles.iter().filter_map(|node_id| {
            self[*node_id]
                .first_child
                .and_then(|child_id| self[child_id].as_text())
        })
    }

    /// Iterate over `href` attribute values of `link[rel~=stylesheet]` tags.
    pub(crate) fn stylesheets(&self) -> impl Iterator<Item = &str> + '_ {
        self.linked_stylesheets.iter().filter_map(|node_id| {
            self[*node_id]
                .as_element()
                .and_then(|data| data.attributes.get(local_name!("href")))
        })
    }

    /// Add a new linked stylesheet location.
    pub(super) fn add_linked_stylesheet(&mut self, node: NodeId) {
        self.linked_stylesheets.push(node);
    }

    /// Add a new node to the nodes vector, returning its index.
    pub(super) fn push_node(&mut self, node: NodeData) -> NodeId {
        let next_index = self.nodes.len();
        self.nodes.push(Node::new(node));
        NodeId::new(next_index)
    }

    /// Detach a node from its siblings and its parent.
    ///
    /// Before:
    ///
    ///   [Parent]
    ///     ↓
    ///    ... [Previous] <--> [Node] <--> [Next] ...
    ///
    /// After:
    ///
    ///   [Parent]
    ///     ↓
    ///    ... [Previous] <--> [Next] ...
    pub(super) fn detach(&mut self, node: NodeId) {
        // Save references to the parent and sibling nodes of the node being detached.
        let (parent, previous_sibling, next_sibling) = {
            let node = &mut self[node];
            (
                node.parent.take(),
                node.previous_sibling.take(),
                node.next_sibling.take(),
            )
        };

        if let Some(next_sibling) = next_sibling {
            // Point next sibling one step back to bypass the detached node
            self[next_sibling].previous_sibling = previous_sibling;
        } else if let Some(parent) = parent {
            // No next sibling - this node was the last child of the parent node, now the previous
            // sibling becomes the last child
            self[parent].last_child = previous_sibling;
        }

        if let Some(previous_sibling) = previous_sibling {
            // Point the previous sibling one step forward to bypass the detached node
            self[previous_sibling].next_sibling = next_sibling;
        } else if let Some(parent) = parent {
            // No previous sibling - this node was the first child of the parent node, now the next
            // sibling becomes the first child
            self[parent].first_child = next_sibling;
        }
    }

    /// Append a new child node to a parent node.
    ///
    /// If the parent node already has children. Before:
    ///
    ///   [Parent]
    ///      ↓
    ///   [Child1] <--> [Child2] <--> ...
    ///
    /// After:
    ///
    ///   [Parent]
    ///      ↓
    ///   [Child1] <--> [Child2] <--> [New] ...
    ///
    /// If the parent node has no children. Before:
    ///
    ///   [Parent]
    ///
    /// After:
    ///
    ///   [Parent]
    ///     ↓
    ///   [New]
    ///
    /// So, [New} becomes the first child of [Parent].
    pub(super) fn append(&mut self, parent: NodeId, node: NodeId) {
        // Detach `node` from its current parent (if any)
        self.detach(node);

        // Set `node` parent to the specified parent
        self[node].parent = Some(parent);

        if let Some(last_child) = self[parent].last_child.take() {
            // Connect `node` with the last child (if any) by adding `node` after it
            self[node].previous_sibling = Some(last_child);
            self[last_child].next_sibling = Some(node);
        } else {
            // No last child - it becomes the first child
            self[parent].first_child = Some(node);
        }

        // Now, `node` is the last child of the new parent
        self[parent].last_child = Some(node);
    }

    /// Insert a new node right before a given sibling node.
    ///
    /// In general, this method transforms this relationship:
    ///
    ///   ... <--> [Previous] <--> [Sibling] <--> [Next] --> ...
    ///
    /// into this:
    ///
    ///   ... <--> [Previous] <--> [New] <--> [Sibling] <--> [Next] <--> ...
    ///
    /// If [Sibling] node is the first child (i.e., no [Previous] exists), the method also updates the parent node:
    ///
    /// Before:
    ///
    ///   [Parent]
    ///     ↓
    ///   [Sibling] <--> [Next] <--> ...
    ///
    /// After:
    ///
    ///   [Parent]
    ///     ↓
    ///   [New] <--> [Sibling] <--> [Next] <--> ...
    ///
    /// So, [New] becomes the first child of [Parent].
    pub(super) fn insert_before(&mut self, sibling: NodeId, node: NodeId) {
        // Detach `node` from its current parent (if any)
        self.detach(node);

        // Set `node` parent to `sibling` parent
        self[node].parent = self[sibling].parent;

        // As it is inserted before, then `next_sibling` should point to `sibling`
        self[node].next_sibling = Some(sibling);

        if let Some(previous_sibling) = self[sibling].previous_sibling.take() {
            // Connect `node` with the previous sibling (if any)
            self[node].previous_sibling = Some(previous_sibling);
            self[previous_sibling].next_sibling = Some(node);
        } else if let Some(parent) = self[sibling].parent {
            // No previous sibling - then it is the first child of its parent, so the parent node
            // should be updated too
            self[parent].first_child = Some(node);
        }

        // Now `node` is the previous sibling of the `sibling` node
        self[sibling].previous_sibling = Some(node);
    }

    /// Returns an iterator over the direct children of a node.
    pub(super) fn children(&self, node: NodeId) -> impl Iterator<Item = NodeId> + '_ {
        successors(self[node].first_child, |&node| self[node].next_sibling)
    }

    /// Serialize the document to HTML string.
    pub(crate) fn serialize<W: Write>(
        &self,
        writer: &mut W,
        styles: IndexMap<NodeId, IndexMap<&str, (Specificity, &str)>, BuildNoHashHasher>,
        keep_style_tags: bool,
        keep_link_tags: bool,
    ) -> Result<(), InlineError> {
        serialize_to(self, writer, styles, keep_style_tags, keep_link_tags)
    }

    /// Filter this node iterator to elements matching the given selectors.
    pub(crate) fn select<'a, 'b>(
        &'a self,
        selectors: &'b str,
    ) -> Result<Select<'a>, ParseError<'b>> {
        select(self, selectors)
    }
}

impl std::ops::Index<NodeId> for Document {
    type Output = Node;

    #[inline]
    fn index(&self, id: NodeId) -> &Node {
        &self.nodes[id.get()]
    }
}

impl std::ops::IndexMut<NodeId> for Document {
    #[inline]
    fn index_mut(&mut self, id: NodeId) -> &mut Node {
        &mut self.nodes[id.get()]
    }
}

#[cfg(test)]
mod tests {
    use super::{super::node::ElementData, *};
    use html5ever::{local_name, namespace_url, ns, QualName};
    use test_case::test_case;

    fn new_element() -> NodeData {
        NodeData::Element {
            element: ElementData::new(QualName::new(None, ns!(), local_name!("span")), vec![]),
            inlining_ignored: false,
        }
    }

    fn roundtrip(bytes: &[u8]) -> Vec<u8> {
        let mut buffer = Vec::new();
        Document::parse_with_options(bytes, 0)
            .serialize(&mut buffer, IndexMap::default(), false, false)
            .expect("Failed to serialize");
        buffer
    }

    #[test]
    fn test_collect_styles() {
        let doc = Document::parse_with_options(
            r#"
<head>
  <style>h1 { color:blue; }</style>
  <style>h1 { color:red }</style>
  <style data-css-inline='ignore'>h1 { color:yellow; }</style>
</head>"#
                .as_bytes(),
            0,
        );
        let styles = doc.styles().collect::<Vec<_>>();
        assert_eq!(styles.len(), 2);
        assert_eq!(styles[0], "h1 { color:blue; }");
        assert_eq!(styles[1], "h1 { color:red }");
    }

    #[test]
    fn test_collect_stylesheets() {
        let doc = Document::parse_with_options(
            r#"
<head>
  <link href='styles1.css' rel='stylesheet' type='text/css'>
  <link href='styles2.css' rel='stylesheet' type='text/css'>
  <link href='' rel='stylesheet' type='text/css'>
  <link href='styles3.css' rel='stylesheet' type='text/css' data-css-inline='ignore'>
</head>"#
                .as_bytes(),
            0,
        );
        let links = doc.stylesheets().collect::<Vec<_>>();
        assert_eq!(links.len(), 2);
        assert_eq!(links[0], "styles1.css");
        assert_eq!(links[1], "styles2.css");
    }

    #[test]
    fn test_insert_before() {
        let mut doc = Document::with_capacity(0);

        let node1_id = doc.push_node(new_element());
        let node2_id = doc.push_node(new_element());
        let new_node_id = doc.push_node(new_element());

        let document_id = NodeId::document_id();
        doc.append(document_id, node1_id);
        doc.append(document_id, node2_id);

        doc.insert_before(node2_id, new_node_id);

        assert_eq!(doc[node2_id].previous_sibling, Some(new_node_id));
        assert_eq!(doc[new_node_id].next_sibling, Some(node2_id));
    }

    #[test]
    fn test_append() {
        let mut doc = Document::with_capacity(0);

        let node1_id = doc.push_node(new_element());
        let node2_id = doc.push_node(new_element());

        let document_id = NodeId::document_id();
        doc.append(document_id, node1_id);
        doc.append(document_id, node2_id);

        assert_eq!(doc[document_id].last_child, Some(node2_id));
        assert_eq!(doc[node1_id].next_sibling, Some(node2_id));
        assert_eq!(doc[node2_id].previous_sibling, Some(node1_id));
    }

    #[test_case(b"<!DOCTYPE html><html><head><title>Title of the document</title></head><body></body></html>")]
    #[test_case(b"<!DOCTYPE html><html><head><title>Title of the document</title></head><body><hr></body></html>")]
    fn test_roundtrip(input: &[u8]) {
        assert_eq!(roundtrip(input), input);
    }

    #[test]
    fn test_ignore_children() {
        assert_eq!(roundtrip(b"<!DOCTYPE html><html><head><title>Title of the document</title></head><body><hr><hr></hr></hr></body></html>"), b"<!DOCTYPE html><html><head><title>Title of the document</title></head><body><hr><hr></body></html>");
    }

    #[test]
    fn test_pseudo_class() {
        let output = roundtrip(b"<!DOCTYPE html><html><head><title>Title of the document</title><style>h1:hover { color:blue; }</style></head><body><h1>Hello world!</h1></body></html>");
        assert_eq!(output, b"<!DOCTYPE html><html><head><title>Title of the document</title></head><body><h1>Hello world!</h1></body></html>");
    }

    #[test]
    fn test_comment() {
        let output = roundtrip(b"<html><head><title>Title of the document</title></head><body><!--TTT--></body></html>");
        assert_eq!(output, b"<html><head><title>Title of the document</title></head><body><!--TTT--></body></html>");
    }
}