1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
use std::thread;

use futures::Future;
use tokio::runtime::Handle;

use super::wait;

/// Run a future on a separate thread.
///
/// Useful when future has a blocking code. Normally such blocking code
/// will also block current all asynchronous tasks. This helper mitigates
/// such issue by running blocking future on a separate thread with its
/// own Tokio runtime.
/// 
/// ### Examples
/// 
/// ```
/// use std::{thread, pin::Pin, time::Duration};
///
/// use futures::{future, Future};
/// use cs_utils::futures::{wait, with_thread};
/// 
/// #[tokio::main(worker_threads = 1)]
/// async fn main() {
///     // variable to count how many iterations
///     // the normal future has run
///     static mut RUN_CNT: u64 = 0;
///
///     // create a future that blocks current thread
///     let blocking_future = async move {
///         thread::sleep(Duration::from_secs(1));    
///     };
///     
///     // create a future that intended to run in background
///     let normal_future = async move {
///         loop {
///             unsafe { RUN_CNT += 1 }
///             wait(100).await;
///         }
///     };
///     
///     // create futures list
///     let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> = vec![
///         Box::pin(with_thread(blocking_future)), // <-- wrap the blocking future here
///         Box::pin(normal_future),
///     ];
///     
///     // race the futures to completion 
///     future::select_all(futures).await;
/// 
///     // must go thru multiple iterations in the normal future
///     assert!(
///         unsafe { RUN_CNT >= 7 } && unsafe { RUN_CNT <= 10 },
///         "Normal future must run iterations multiple times.",
///     );
/// }
/// ```
pub async fn with_thread<
    T: Send + 'static,
    TFuture: Future<Output = T> + Send + 'static,
>(
    original_future: TFuture,
) -> T {
    let tokio_handle = Handle::try_current()
        .expect("Needs running Tokio runtime.");

    let other_thread = thread::spawn(move || {
        let _guard = tokio_handle.enter();

        return tokio_handle.block_on(original_future);
    });

    // poll the thread, yielding if it is not finished yet
    while !other_thread.is_finished() {
        // common thread time slice is `~100ms`, so
        // `5ms` delay should be granular enough here 
        wait(5).await;

        continue;
    }

    return other_thread
        .join().unwrap();
}

#[cfg(test)]
mod tests {
    use std::{thread, pin::Pin, time::Duration};
    use futures::{future, Future};
    use cs_utils::futures::{wait, with_thread};

    #[tokio::test]
    async fn run_blocking_future_on_separate_thread() {
        static mut NORMAL_FUTURE_RUN_COUNTER: u64 = 0;
        let block_for_ms: u64 = 1000;
        let run_each_ms: u64 = 100;

        let blocking_future = async move {
            thread::sleep(Duration::from_millis(block_for_ms));    
        };
        let normal_future = async move {
            loop {
                wait(run_each_ms).await;

                unsafe {
                    NORMAL_FUTURE_RUN_COUNTER += 1;
                }
            }
        };
    
        let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> = vec![
            Box::pin(with_thread(blocking_future)),
            Box::pin(normal_future),
        ];
        
        // race futures to first completion
        future::select_all(futures).await;

        // normal future can run at most `BLOCK_FOR_MS` / `RUN_EACH_MS` times
        let expected_run_count = block_for_ms / run_each_ms;
        // assert that normal future run multiple time (close to `expected_run_count` times)
        let run_delta = expected_run_count - unsafe { NORMAL_FUTURE_RUN_COUNTER };
        assert!(
            run_delta <= 3,
            "Must run normal future multiple times.",
        );
    }

    #[tokio::test]
    async fn shares_runtime() {
        static mut NORMAL_FUTURE_RUN_COUNTER: u64 = 0;
        let block_for_ms: u64 = 1000;
        let run_each_ms: u64 = 100;

        let blocking_future = async move {
            thread::sleep(Duration::from_millis(block_for_ms));    
        };
        let normal_future = async move {
            loop {
                wait(run_each_ms).await;

                unsafe {
                    NORMAL_FUTURE_RUN_COUNTER += 1;
                }
            }
        };
    
        let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> = vec![
            Box::pin(with_thread(blocking_future)),
            Box::pin(
                with_thread(normal_future),
            ),
        ];
        
        // race futures to first completion
        future::select_all(futures).await;

        // normal future can run at most `BLOCK_FOR_MS` / `RUN_EACH_MS` times
        let expected_run_count = block_for_ms / run_each_ms;
        // assert that normal future run multiple time (close to `expected_run_count` times)
        let run_delta = expected_run_count - unsafe { NORMAL_FUTURE_RUN_COUNTER };
        assert!(
            run_delta <= 3,
            "Must run normal future multiple times.",
        );
    }

    #[tokio::test]
    async fn runs_nested_blocking_futures() {
        static mut NORMAL_FUTURE_RUN_COUNTER: u64 = 0;
        let block_for_ms: u64 = 1000;
        let run_each_ms: u64 = 100;

        let blocking_future = async move {
            let fut = async move {
                thread::sleep(Duration::from_millis(block_for_ms));    
            };   

            fut.await;
        };
        let normal_future = async move {
            loop {
                wait(run_each_ms).await;

                unsafe {
                    NORMAL_FUTURE_RUN_COUNTER += 1;
                }
            }
        };
    
        let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> = vec![
            Box::pin(with_thread(blocking_future)),
            Box::pin(normal_future),
        ];
        
        // race futures to first completion
        future::select_all(futures).await;

        // normal future can run at most `BLOCK_FOR_MS` / `RUN_EACH_MS` times
        let expected_run_count = block_for_ms / run_each_ms;
        // assert that normal future run multiple time (close to `expected_run_count` times)
        let run_delta = expected_run_count - unsafe { NORMAL_FUTURE_RUN_COUNTER };
        assert!(
            run_delta <= 3,
            "Must run normal future multiple times.",
        );
    }

    #[tokio::test]
    async fn runs_nested_futures() {
        static mut NORMAL_FUTURE_RUN_COUNTER: u64 = 0;
        let block_for_ms: u64 = 1000;
        let run_each_ms: u64 = 100;

        let blocking_future = async move {
            let fut = async move {
                thread::sleep(Duration::from_millis(block_for_ms));    
            };   

            fut.await;
        };
        let normal_future = async move {
            loop {
                wait(run_each_ms).await;

                unsafe {
                    NORMAL_FUTURE_RUN_COUNTER += 1;
                }
            }
        };
    
        let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> = vec![
            Box::pin(
                with_thread(
                    with_thread(blocking_future),
                ),
            ),
            Box::pin(
                with_thread(
                    with_thread(
                        with_thread(normal_future),
                    ),
                ),
            ),
        ];
        
        // race futures to first completion
        future::select_all(futures).await;

        // normal future can run at most `BLOCK_FOR_MS` / `RUN_EACH_MS` times
        let expected_run_count = block_for_ms / run_each_ms;
        // assert that normal future run multiple time (close to `expected_run_count` times)
        let run_delta = expected_run_count - unsafe { NORMAL_FUTURE_RUN_COUNTER };
        assert!(
            run_delta <= 3,
            "Must run normal future multiple times.",
        );
    }
}