1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

/*! Cryptographic Message Syntax (RFC 5652) in Pure Rust

This crate attempts to implement parts of
[RFC 5652](https://tools.ietf.org/rfc/rfc5652.txt) in pure, safe Rust.

Functionality includes:

* Partial (de)serialization support for ASN.1 data structures. The
  Rust structs are all defined. But not everything has (de)serialization
  code implemented.
* High-level Rust API for extracting useful attributes from a parsed
  `SignedData` structure and performing common operations, such as verifying
  signature integrity.

RFC 5652 is quite old. If you are looking to digitally sign content, you may
want to look at something newer, such as RPKI (RFC 6488). (RPKI appears to
be the spiritual success to this specification.)

# IMPORTANT SECURITY LIMITATIONS

**The verification functionality in this crate is purposefully limited
and isn't sufficient for trusting signed data. You need to include additional
trust verification if you are using this crate for verifying signed data.**

This crate exposes functionality to verify signatures and content integrity
of *signed data*. Specifically it can verify that an embedded cryptographic
signature over some arbitrary/embedded content was issued by a known signing
certificate. This answers the question *did certificate X sign content Y*.
This is an important question to answer, but it fails to answer other important
questions such as:

* Is the signature cryptographically strong or weak? Do I trust the signature?
* Do I trust the signer?

Answering *do I trust the signer* is an extremely difficult and nuanced
problem. It entails things like:

* Ensuring the signing certificate is using secure cryptography.
* Validating that the signing certificate is one you think it was or was
  issued by a trusted party.
* Validating the certificate isn't expired or hasn't been revoked.
* Validating that the certificate contains attributes/extensions desired
  (e.g. a certificate can be earmarked as used for signing code).

If you are using this crate as part of verifying signed content, you need
to have answers to these hard questions. This will require writing code
beyond what is available in this crate. You ideally want to use existing
libraries for this, as getting this correct is difficult. Ideally you would
consult a security/cryptography domain expert for help.

# Technical Notes

RFC 5652 is based off PKCS #7 version 1.5 (RFC 2315). So common tools/libraries
for interacting with PKCS #7 may have success parsing this format. For example,
you can use OpenSSL to read the data structures:

   $ openssl pkcs7 -inform DER -in <filename> -print
   $ openssl pkcs7 -inform PEM -in <filename> -print
   $ openssl asn1parse -inform DER -in <filename>

RFC 5652 uses BER (not DER) for serialization. There were attempts to use
other, more popular BER/DER/ASN.1 serialization crates. However, we could
only get `bcder` working. In a similar vein, there are other crates
implementing support for common ASN.1 functionality, such as serializing
X.509 certificates. Again, many of these depend on serializers that don't
seem to be compatible with BER. So we've recursively defined ASN.1 data
structures referenced by RFC5652 and taught them to serialize using `bcder`.
*/

pub mod asn1;
mod signing;
mod time_stamp_protocol;

pub use {
    signing::{SignedDataBuilder, SignerBuilder},
    time_stamp_protocol::{time_stamp_message_http, time_stamp_request_http, TimeStampError},
};

use {
    crate::asn1::{
        rfc3161::OID_TIME_STAMP_TOKEN,
        rfc5652::{
            CertificateChoices, SignerIdentifier, Time, OID_CONTENT_TYPE, OID_MESSAGE_DIGEST,
            OID_SIGNING_TIME,
        },
    },
    bcder::{Integer, OctetString, Oid},
    pem::PemError,
    ring::{digest::Digest, signature::UnparsedPublicKey},
    std::{
        collections::HashSet,
        fmt::{Debug, Display, Formatter},
        ops::Deref,
    },
    x509_certificate::{
        certificate::certificate_is_subset_of, rfc3280::Name, CapturedX509Certificate,
        DigestAlgorithm, SignatureAlgorithm, X509Certificate, X509CertificateError,
    },
};

#[derive(Debug)]
pub enum CmsError {
    /// An error occurred decoding ASN.1 data.
    DecodeErr(bcder::decode::Error),

    /// The content-type attribute is missing from the SignedAttributes structure.
    MissingSignedAttributeContentType,

    /// The content-type attribute in the SignedAttributes structure is malformed.
    MalformedSignedAttributeContentType,

    /// The message-digest attribute is missed from the SignedAttributes structure.
    MissingSignedAttributeMessageDigest,

    /// The message-digest attribute is malformed.
    MalformedSignedAttributeMessageDigest,

    /// The signing-time signed attribute is malformed.
    MalformedSignedAttributeSigningTime,

    /// The time-stamp token unsigned attribute is malformed.
    MalformedUnsignedAttributeTimeStampToken,

    /// Subject key identifiers in signer info is not supported.
    SubjectKeyIdentifierUnsupported,

    /// A general I/O error occurred.
    Io(std::io::Error),

    /// An unknown signing key algorithm was encountered.
    UnknownKeyAlgorithm(Oid),

    /// An unknown message digest algorithm was encountered.
    UnknownDigestAlgorithm(Oid),

    /// An unknown signature algorithm was encountered.
    UnknownSignatureAlgorithm(Oid),

    /// An unknown certificate format was encountered.
    UnknownCertificateFormat,

    /// A certificate was not found.
    CertificateNotFound,

    /// Signature verification fail.
    SignatureVerificationError,

    /// No `SignedAttributes` were present when they should have been.
    NoSignedAttributes,

    /// Two content digests were not equivalent.
    DigestNotEqual,

    /// Error encoding/decoding PEM data.
    Pem(PemError),

    /// Error occurred when creating a signature.
    SignatureCreation(signature::Error),

    /// Attempted to use a `Certificate` but we couldn't find the backing data for it.
    CertificateMissingData,

    /// Error occurred parsing a distinguished name field in a certificate.
    DistinguishedNameParseError,

    /// Error occurred in Time-Stamp Protocol.
    TimeStampProtocol(TimeStampError),

    /// Error occurred in the x509-certificate crate.
    X509Certificate(X509CertificateError),
}

impl std::error::Error for CmsError {}

impl Display for CmsError {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::DecodeErr(e) => std::fmt::Display::fmt(e, f),
            Self::MissingSignedAttributeContentType => {
                f.write_str("content-type attribute missing from SignedAttributes")
            }
            Self::MalformedSignedAttributeContentType => {
                f.write_str("content-type attribute in SignedAttributes is malformed")
            }
            Self::MissingSignedAttributeMessageDigest => {
                f.write_str("message-digest attribute missing from SignedAttributes")
            }
            Self::MalformedSignedAttributeMessageDigest => {
                f.write_str("message-digest attribute in SignedAttributes is malformed")
            }
            Self::MalformedSignedAttributeSigningTime => {
                f.write_str("signing-time attribute in SignedAttributes is malformed")
            }
            Self::MalformedUnsignedAttributeTimeStampToken => {
                f.write_str("time-stamp token attribute in UnsignedAttributes is malformed")
            }
            Self::SubjectKeyIdentifierUnsupported => {
                f.write_str("signer info using subject key identifier is not supported")
            }
            Self::Io(e) => std::fmt::Display::fmt(e, f),
            Self::UnknownKeyAlgorithm(oid) => {
                f.write_fmt(format_args!("unknown signing key algorithm: {}", oid))
            }
            Self::UnknownDigestAlgorithm(oid) => {
                f.write_fmt(format_args!("unknown digest algorithm: {}", oid))
            }
            Self::UnknownSignatureAlgorithm(oid) => {
                f.write_fmt(format_args!("unknown signature algorithm: {}", oid))
            }
            Self::UnknownCertificateFormat => f.write_str("unknown certificate format"),
            Self::CertificateNotFound => f.write_str("certificate not found"),
            Self::SignatureVerificationError => f.write_str("signature verification failed"),
            Self::NoSignedAttributes => f.write_str("SignedAttributes structure is missing"),
            Self::DigestNotEqual => f.write_str("digests not equivalent"),
            Self::Pem(e) => f.write_fmt(format_args!("PEM error: {}", e)),
            Self::SignatureCreation(e) => {
                f.write_fmt(format_args!("error during signature creation: {}", e))
            }
            Self::CertificateMissingData => f.write_str("certificate data not available"),
            Self::DistinguishedNameParseError => {
                f.write_str("could not parse distinguished name data")
            }
            Self::TimeStampProtocol(e) => {
                f.write_fmt(format_args!("Time-Stamp Protocol error: {}", e))
            }
            Self::X509Certificate(e) => {
                f.write_fmt(format_args!("X.509 certificate error: {:?}", e))
            }
        }
    }
}

impl From<bcder::decode::Error> for CmsError {
    fn from(e: bcder::decode::Error) -> Self {
        Self::DecodeErr(e)
    }
}

impl From<std::io::Error> for CmsError {
    fn from(e: std::io::Error) -> Self {
        Self::Io(e)
    }
}

impl From<PemError> for CmsError {
    fn from(e: PemError) -> Self {
        Self::Pem(e)
    }
}

impl From<TimeStampError> for CmsError {
    fn from(e: TimeStampError) -> Self {
        Self::TimeStampProtocol(e)
    }
}

impl From<signature::Error> for CmsError {
    fn from(e: signature::Error) -> Self {
        Self::SignatureCreation(e)
    }
}

impl From<X509CertificateError> for CmsError {
    fn from(e: X509CertificateError) -> Self {
        Self::X509Certificate(e)
    }
}

/// Represents a CMS SignedData structure.
///
/// This is the high-level type representing a CMS signature of some data.
/// It contains a description of what was signed, the cryptographic signature
/// of what was signed, and likely the X.509 certificate chain for the
/// signing key.
///
/// This is a high-level data structure that ultimately gets (de)serialized
/// from/to ASN.1. It exists to facilitate common interactions with the
/// low-level ASN.1 without exposing the complexity of ASN.1.
#[derive(Clone)]
pub struct SignedData {
    /// Content digest algorithms used.
    digest_algorithms: HashSet<DigestAlgorithm>,

    /// Content that was signed.
    ///
    /// This is optional because signed content can also be articulated
    /// via signed attributes inside the `SignerInfo` structure.
    signed_content: Option<Vec<u8>>,

    /// Certificates embedded within the data structure.
    ///
    /// While not required, it is common for the SignedData data structure
    /// to embed the X.509 certificates used to sign the data within. This
    /// field holds those certificates.
    ///
    /// Typically the root CA is first and the actual signing certificate is
    /// last.
    certificates: Option<Vec<CapturedX509Certificate>>,

    /// Describes content signatures.
    signers: Vec<SignerInfo>,
}

impl Debug for SignedData {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut s = f.debug_struct("SignedData");
        s.field("digest_algorithms", &self.digest_algorithms);
        s.field(
            "signed_content",
            &format_args!("{:?}", self.signed_content.as_ref().map(hex::encode)),
        );
        s.field("certificates", &self.certificates);
        s.field("signers", &self.signers);
        s.finish()
    }
}

impl SignedData {
    /// Construct an instance by parsing BER data.
    pub fn parse_ber(data: &[u8]) -> Result<Self, CmsError> {
        Self::try_from(&crate::asn1::rfc5652::SignedData::decode_ber(data)?)
    }

    /// Compute the digest of the encapsulated content using a specified algorithm.
    ///
    /// The returned value is likely used as the `message-digest` attribute type
    /// for use within signed attributes.
    ///
    /// You can get the raw bytes of the digest by calling its `.as_ref()`.
    pub fn message_digest_with_algorithm(&self, alg: DigestAlgorithm) -> Digest {
        let mut hasher = alg.digester();

        if let Some(content) = &self.signed_content {
            hasher.update(content);
        }

        hasher.finish()
    }

    /// Obtain encapsulated content that was signed.
    ///
    /// This is the defined `encapContentInfo cContent` value.
    pub fn signed_content(&self) -> Option<&[u8]> {
        if let Some(content) = &self.signed_content {
            Some(content)
        } else {
            None
        }
    }

    pub fn certificates(&self) -> Box<dyn Iterator<Item = &CapturedX509Certificate> + '_> {
        match self.certificates.as_ref() {
            Some(certs) => Box::new(certs.iter()),
            None => Box::new(std::iter::empty()),
        }
    }

    /// Obtain signing information attached to this instance.
    ///
    /// Each iterated value represents an entity that cryptographically signed
    /// the content. Use these objects to validate the signed data.
    pub fn signers(&self) -> impl Iterator<Item = &SignerInfo> {
        self.signers.iter()
    }
}

impl TryFrom<&crate::asn1::rfc5652::SignedData> for SignedData {
    type Error = CmsError;

    fn try_from(raw: &crate::asn1::rfc5652::SignedData) -> Result<Self, Self::Error> {
        let digest_algorithms = raw
            .digest_algorithms
            .iter()
            .map(DigestAlgorithm::try_from)
            .collect::<Result<HashSet<_>, _>>()?;

        let signed_content = raw
            .content_info
            .content
            .as_ref()
            .map(|content| content.to_bytes().to_vec());

        let certificates = if let Some(certs) = &raw.certificates {
            Some(
                certs
                    .iter()
                    .map(|choice| match choice {
                        CertificateChoices::Certificate(cert) => {
                            // Doing the ASN.1 round-tripping here isn't ideal and may
                            // lead to correctness bugs.
                            let cert = X509Certificate::from(cert.deref().clone());
                            let cert_ber = cert.encode_ber()?;

                            Ok(CapturedX509Certificate::from_ber(cert_ber)?)
                        }
                        _ => Err(CmsError::UnknownCertificateFormat),
                    })
                    .collect::<Result<Vec<_>, CmsError>>()?,
            )
        } else {
            None
        };

        let signers = raw
            .signer_infos
            .iter()
            .map(SignerInfo::try_from)
            .collect::<Result<Vec<_>, CmsError>>()?;

        Ok(Self {
            digest_algorithms,
            signed_content,
            certificates,
            signers,
        })
    }
}

/// Represents a CMS SignerInfo structure.
///
/// This is a high-level interface to the SignerInfo ASN.1 type. It supports
/// performing common operations against that type.
///
/// Instances of this type are logically equivalent to a single
/// signed assertion within a `SignedData` payload. There can be multiple
/// signers per `SignedData`, which is why this type exists on its own.
#[derive(Clone)]
pub struct SignerInfo {
    /// The X.509 certificate issuer.
    issuer: Name,

    /// The X.509 certificate serial number.
    serial_number: Integer,

    /// The algorithm used for digesting signed content.
    digest_algorithm: DigestAlgorithm,

    /// Algorithm used for signing the digest.
    signature_algorithm: SignatureAlgorithm,

    /// The cryptographic signature.
    signature: Vec<u8>,

    /// Parsed signed attributes.
    signed_attributes: Option<SignedAttributes>,

    /// Raw data constituting SignedAttributes that needs to be digested.
    digested_signed_attributes_data: Option<Vec<u8>>,

    /// Parsed unsigned attributes.
    unsigned_attributes: Option<UnsignedAttributes>,
}

impl Debug for SignerInfo {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut s = f.debug_struct("SignerInfo");
        s.field("issuer", &self.issuer);
        s.field("serial_number", &self.serial_number);
        s.field("digest_algorithm", &self.digest_algorithm);
        s.field("signature_algorithm", &self.signature_algorithm);
        s.field(
            "signature",
            &format_args!("{}", hex::encode(&self.signature)),
        );
        s.field("signed_attributes", &self.signed_attributes);
        s.field(
            "digested_signed_attributes_data",
            &format_args!(
                "{:?}",
                self.digested_signed_attributes_data
                    .as_ref()
                    .map(hex::encode)
            ),
        );
        s.field("unsigned_attributes", &self.unsigned_attributes);
        s.finish()
    }
}

impl SignerInfo {
    /// Obtain the signing X.509 certificate's issuer name and its serial number.
    ///
    /// The returned value can be used to locate the certificate so
    /// verification can be performed.
    pub fn certificate_issuer_and_serial(&self) -> Option<(&Name, &Integer)> {
        Some((&self.issuer, &self.serial_number))
    }

    /// Obtain the message digest algorithm used by this signer.
    pub fn digest_algorithm(&self) -> DigestAlgorithm {
        self.digest_algorithm
    }

    /// Obtain the cryptographic signing algorithm used by this signer.
    pub fn signature_algorithm(&self) -> SignatureAlgorithm {
        self.signature_algorithm
    }

    /// Obtain the raw bytes constituting the cryptographic signature.
    ///
    /// This is the signature that should be verified.
    pub fn signature(&self) -> &[u8] {
        &self.signature
    }

    /// Obtain the `SignedAttributes` attached to this instance.
    pub fn signed_attributes(&self) -> Option<&SignedAttributes> {
        self.signed_attributes.as_ref()
    }

    /// Obtain the `UnsignedAttributes` attached to this instance.
    pub fn unsigned_attributes(&self) -> Option<&UnsignedAttributes> {
        self.unsigned_attributes.as_ref()
    }

    /// Verifies the signature defined by this signer given a [SignedData] instance.
    ///
    /// This function will perform cryptographic verification that the signature
    /// contained within this `SignerInfo` instance is valid for the content that
    /// was signed. The content that was signed is the encapsulated content from
    /// the `SignedData` instance (its `.signed_data()` value) combined with
    /// the `SignedAttributes` attached to this instance.
    ///
    /// # IMPORTANT SECURITY LIMITATIONS
    ///
    /// This method only performs signature verification. It:
    ///
    /// * DOES NOT verify the digest hash embedded within `SignedAttributes` (if present).
    /// * DOES NOT validate the signing certificate in any way.
    /// * DOES NOT validate that the cryptography used is appropriate.
    /// * DOES NOT verify the time stamp token, if present.
    ///
    /// See the crate's documentation for more on the security implications.
    pub fn verify_signature_with_signed_data(
        &self,
        signed_data: &SignedData,
    ) -> Result<(), CmsError> {
        let signed_content = self.signed_content_with_signed_data(signed_data);

        self.verify_signature_with_signed_data_and_content(signed_data, &signed_content)
    }

    /// Verifies the signature defined by this signer given a [SignedData] and signed content.
    ///
    /// This function will perform cryptographic verification that the signature contained within
    /// this [SignerInfo] is valid for `signed_content`. Unlike
    /// [Self::verify_signature_with_signed_data()], the content that was signed is passed in
    /// explicitly instead of derived from [SignedData].
    ///
    /// This method only performs cryptographic signature verification. It is therefore subject
    /// to the same limitations as [Self::verify_signature_with_signed_data()].
    pub fn verify_signature_with_signed_data_and_content(
        &self,
        signed_data: &SignedData,
        signed_content: &[u8],
    ) -> Result<(), CmsError> {
        let verifier = self.signature_verifier(signed_data.certificates())?;
        let signature = self.signature();

        verifier
            .verify(signed_content, signature)
            .map_err(|_| CmsError::SignatureVerificationError)
    }

    /// Verifies the digest stored in signed attributes matches that of content in a `SignedData`.
    ///
    /// If signed attributes are present on this instance, they must contain
    /// a `message-digest` attribute defining the digest of data that was
    /// signed. The specification says this digested data should come from
    /// the encapsulated content within `SignedData` (`SignedData.signed_content()`).
    ///
    /// Note that some utilities of CMS will not store a computed digest
    /// in `message-digest` that came from `SignedData` or is using
    /// the digest algorithm indicated by this `SignerInfo`. This is strictly
    /// in violation of the specification but it does occur.
    ///
    /// # IMPORTANT SECURITY LIMITATIONS
    ///
    /// This method only performs message digest verification. It:
    ///
    /// * DOES NOT verify the signature over the signed data or anything about
    ///   the signer.
    /// * DOES NOT validate that the digest algorithm is strong/appropriate.
    /// * DOES NOT compare the digests in a manner that is immune to timing
    ///   side-channels.
    ///
    /// See the crate's documentation for more on the security implications.
    pub fn verify_message_digest_with_signed_data(
        &self,
        signed_data: &SignedData,
    ) -> Result<(), CmsError> {
        let signed_attributes = self
            .signed_attributes()
            .ok_or(CmsError::NoSignedAttributes)?;

        let wanted_digest: &[u8] = signed_attributes.message_digest.as_ref();
        let got_digest = self.compute_digest_with_signed_data(signed_data);

        // Susceptible to timing side-channel but we don't care per function
        // documentation.
        if wanted_digest == got_digest.as_ref() {
            Ok(())
        } else {
            Err(CmsError::DigestNotEqual)
        }
    }

    /// Verifies the message digest stored in signed attributes using explicit encapsulated content.
    ///
    /// Typically, the digest is computed over content stored in the [SignedData] instance.
    /// However, it is possible for the signed content to be external. This function
    /// allows you to define the source of that external content.
    ///
    /// Behavior is very similar to [SignerInfo::verify_message_digest_with_signed_data]
    /// except the original content that was digested is explicitly passed in. This
    /// content is appended with the signed attributes data on this [SignerInfo].
    ///
    /// The security limitations from [SignerInfo::verify_message_digest_with_signed_data]
    /// apply to this function as well.
    pub fn verify_message_digest_with_content(&self, data: &[u8]) -> Result<(), CmsError> {
        let signed_attributes = self
            .signed_attributes()
            .ok_or(CmsError::NoSignedAttributes)?;

        let wanted_digest: &[u8] = signed_attributes.message_digest.as_ref();
        let got_digest = self.compute_digest(Some(data));

        // Susceptible to timing side-channel but we don't care per function
        // documentation.
        if wanted_digest == got_digest.as_ref() {
            Ok(())
        } else {
            Err(CmsError::DigestNotEqual)
        }
    }

    /// Obtain an entity for validating the signature described by this instance.
    ///
    /// This will attempt to locate the certificate used by this signing info
    /// structure in the passed iterable of certificates and then construct
    /// a signature verifier that can be used to verify content integrity.
    ///
    /// If the certificate referenced by this signing info could not be found,
    /// an error occurs.
    ///
    /// If the signing key's algorithm or signature algorithm aren't supported,
    /// an error occurs.
    pub fn signature_verifier<'a, C>(
        &self,
        mut certs: C,
    ) -> Result<UnparsedPublicKey<Vec<u8>>, CmsError>
    where
        C: Iterator<Item = &'a CapturedX509Certificate>,
    {
        // The issuer of this signature is matched against the list of certificates.
        let signing_cert = certs
            .find(|cert| {
                // We're only verifying signatures here, not validating the certificate.
                // So even if the certificate comparison functionality is incorrect
                // (the called function does non-exact matching of the RdnSequence in
                // case the candidate certs have extra fields), that shouldn't have
                // security implications.
                certificate_is_subset_of(
                    &self.serial_number,
                    &self.issuer,
                    cert.serial_number_asn1(),
                    cert.issuer_name(),
                )
            })
            .ok_or(CmsError::CertificateNotFound)?;

        let key_algorithm = signing_cert.key_algorithm().ok_or_else(|| {
            CmsError::UnknownKeyAlgorithm(signing_cert.key_algorithm_oid().clone())
        })?;

        let verification_algorithm = self
            .signature_algorithm
            .resolve_verification_algorithm(key_algorithm)?;

        let public_key = UnparsedPublicKey::new(
            verification_algorithm,
            signing_cert.public_key_data().to_vec(),
        );

        Ok(public_key)
    }

    /// Resolve the time-stamp token [SignedData] for this signer.
    ///
    /// The time-stamp token is a SignedData ASN.1 structure embedded as an unsigned
    /// attribute. This is a convenience method to extract it and turn it into
    /// a [SignedData].
    ///
    /// Returns `Ok(Some)` on success, `Ok(None)` if there is no time-stamp token,
    /// and `Err` if there is a parsing error.
    pub fn time_stamp_token_signed_data(&self) -> Result<Option<SignedData>, CmsError> {
        if let Some(attrs) = self.unsigned_attributes() {
            if let Some(signed_data) = &attrs.time_stamp_token {
                Ok(Some(SignedData::try_from(signed_data)?))
            } else {
                Ok(None)
            }
        } else {
            Ok(None)
        }
    }

    /// Verify the time-stamp token in this instance.
    ///
    /// The time-stamp token is a SignedData ASN.1 structure embedded as an unsigned
    /// attribute. So this method reconstructs that data structure and effectively
    /// calls [SignerInfo::verify_signature_with_signed_data] and
    /// [SignerInfo::verify_message_digest_with_signed_data].
    ///
    /// Returns `Ok(None)` if there is no time-stamp token and `Ok(Some(()))` if
    /// there is and the token validates. `Err` occurs on any parse or verification
    /// error.
    pub fn verify_time_stamp_token(&self) -> Result<Option<()>, CmsError> {
        let signed_data = if let Some(v) = self.time_stamp_token_signed_data()? {
            v
        } else {
            return Ok(None);
        };

        if signed_data.signers.is_empty() {
            return Ok(None);
        }

        for signer in signed_data.signers() {
            signer.verify_signature_with_signed_data(&signed_data)?;
            signer.verify_message_digest_with_signed_data(&signed_data)?;
        }

        Ok(Some(()))
    }

    /// Obtain the raw bytes of content that was signed given a `SignedData`.
    ///
    /// This joins the encapsulated content from `SignedData` with `SignedAttributes`
    /// on this instance to produce a new blob. This new blob is the message
    /// that is signed and whose signature is embedded in `SignerInfo` instances.
    pub fn signed_content_with_signed_data(&self, signed_data: &SignedData) -> Vec<u8> {
        self.signed_content(signed_data.signed_content())
    }

    /// Obtain the raw bytes of content that were digested and signed.
    ///
    /// The returned value is the message that was signed and whose signature
    /// of which needs to be verified.
    ///
    /// The optional content argument is the `encapContentInfo eContent`
    /// field, typically the value of `SignedData.signed_content()`.
    pub fn signed_content(&self, content: Option<&[u8]>) -> Vec<u8> {
        // Per RFC 5652 Section 5.4:
        //
        //    The result of the message digest calculation process depends on
        //    whether the signedAttrs field is present.  When the field is absent,
        //    the result is just the message digest of the content as described
        //    above.  When the field is present, however, the result is the message
        //    digest of the complete DER encoding of the SignedAttrs value
        //    contained in the signedAttrs field.  Since the SignedAttrs value,
        //    when present, must contain the content-type and the message-digest
        //    attributes, those values are indirectly included in the result.  The
        //    content-type attribute MUST NOT be included in a countersignature
        //    unsigned attribute as defined in Section 11.4.  A separate encoding
        //    of the signedAttrs field is performed for message digest calculation.
        //    The IMPLICIT [0] tag in the signedAttrs is not used for the DER
        //    encoding, rather an EXPLICIT SET OF tag is used.  That is, the DER
        //    encoding of the EXPLICIT SET OF tag, rather than of the IMPLICIT [0]
        //    tag, MUST be included in the message digest calculation along with
        //    the length and content octets of the SignedAttributes value.

        if let Some(signed_attributes_data) = &self.digested_signed_attributes_data {
            signed_attributes_data.clone()
        } else if let Some(content) = content {
            content.to_vec()
        } else {
            vec![]
        }
    }

    /// Obtain the raw bytes constituting `SignerInfo.signedAttrs` as encoded for signatures.
    ///
    /// Cryptographic signatures in the `SignerInfo` ASN.1 type are made from the digest
    /// of the `EXPLICIT SET OF` DER encoding of `SignerInfo.signedAttrs`, if signed
    /// attributes are present. This function resolves the raw bytes that are used
    /// for digest computation and later signing.
    ///
    /// This should always be `Some` if the instance was constructed from an ASN.1
    /// value that had signed attributes.
    pub fn signed_attributes_data(&self) -> Option<&[u8]> {
        self.digested_signed_attributes_data
            .as_ref()
            .map(|x| x.as_ref())
    }

    /// Compute a message digest using a `SignedData` instance.
    ///
    /// This will obtain the encapsulated content blob from a `SignedData`
    /// and digest it using the algorithm configured on this instance.
    ///
    /// The resulting digest is typically stored in the `message-digest`
    /// attribute of `SignedData`.
    pub fn compute_digest_with_signed_data(&self, signed_data: &SignedData) -> Digest {
        self.compute_digest(signed_data.signed_content())
    }

    /// Compute a message digest using the configured algorithm.
    ///
    /// This method calls into `compute_digest_with_algorithm()` using the
    /// digest algorithm stored in this instance.
    pub fn compute_digest(&self, content: Option<&[u8]>) -> Digest {
        self.compute_digest_with_algorithm(content, self.digest_algorithm)
    }

    /// Compute a message digest using an explicit digest algorithm.
    ///
    /// This will compute the hash/digest of the passed in content.
    pub fn compute_digest_with_algorithm(
        &self,
        content: Option<&[u8]>,
        alg: DigestAlgorithm,
    ) -> Digest {
        let mut hasher = alg.digester();

        if let Some(content) = content {
            hasher.update(content);
        }

        hasher.finish()
    }
}

impl TryFrom<&crate::asn1::rfc5652::SignerInfo> for SignerInfo {
    type Error = CmsError;

    fn try_from(signer_info: &crate::asn1::rfc5652::SignerInfo) -> Result<Self, Self::Error> {
        let (issuer, serial_number) = match &signer_info.sid {
            SignerIdentifier::IssuerAndSerialNumber(issuer) => {
                (issuer.issuer.clone(), issuer.serial_number.clone())
            }
            SignerIdentifier::SubjectKeyIdentifier(_) => {
                return Err(CmsError::SubjectKeyIdentifierUnsupported);
            }
        };

        let digest_algorithm = DigestAlgorithm::try_from(&signer_info.digest_algorithm)?;

        // The "signature" algorithm can also be a key algorithm identifier. So we
        // attempt to resolve using the more robust mechanism.
        let signature_algorithm = SignatureAlgorithm::from_oid_and_digest_algorithm(
            &signer_info.signature_algorithm.algorithm,
            digest_algorithm,
        )?;

        let signature = signer_info.signature.to_bytes().to_vec();

        let signed_attributes = if let Some(attributes) = &signer_info.signed_attributes {
            // Content type attribute MUST be present.
            let content_type = attributes
                .iter()
                .find(|attr| attr.typ == OID_CONTENT_TYPE)
                .ok_or(CmsError::MissingSignedAttributeContentType)?;

            // Content type attribute MUST have exactly 1 value.
            if content_type.values.len() != 1 {
                return Err(CmsError::MalformedSignedAttributeContentType);
            }

            let content_type = content_type
                .values
                .get(0)
                .unwrap()
                .deref()
                .clone()
                .decode(|cons| Oid::take_from(cons))
                .map_err(|_| CmsError::MalformedSignedAttributeContentType)?;

            // Message digest attribute MUST be present.
            let message_digest = attributes
                .iter()
                .find(|attr| attr.typ == OID_MESSAGE_DIGEST)
                .ok_or(CmsError::MissingSignedAttributeMessageDigest)?;

            // Message digest attribute MUST have exactly 1 value.
            if message_digest.values.len() != 1 {
                return Err(CmsError::MalformedSignedAttributeMessageDigest);
            }

            let message_digest = message_digest
                .values
                .get(0)
                .unwrap()
                .deref()
                .clone()
                .decode(|cons| OctetString::take_from(cons))
                .map_err(|_| CmsError::MalformedSignedAttributeMessageDigest)?
                .to_bytes()
                .to_vec();

            // Signing time is optional, but common. So we pull it out for convenience.
            let signing_time = attributes
                .iter()
                .find(|attr| attr.typ == OID_SIGNING_TIME)
                .map(|attr| {
                    if attr.values.len() != 1 {
                        Err(CmsError::MalformedSignedAttributeSigningTime)
                    } else {
                        let time = attr
                            .values
                            .get(0)
                            .unwrap()
                            .deref()
                            .clone()
                            .decode(|cons| Time::take_from(cons))?;

                        let time = chrono::DateTime::from(time);

                        Ok(time)
                    }
                })
                .transpose()?;

            Some(SignedAttributes {
                content_type,
                message_digest,
                signing_time,
                raw: attributes.clone(),
            })
        } else {
            None
        };

        let digested_signed_attributes_data = signer_info.signed_attributes_digested_content()?;

        let unsigned_attributes =
            if let Some(attributes) = &signer_info.unsigned_attributes {
                let time_stamp_token =
                    attributes
                        .iter()
                        .find(|attr| attr.typ == OID_TIME_STAMP_TOKEN)
                        .map(|attr| {
                            if attr.values.len() != 1 {
                                Err(CmsError::MalformedUnsignedAttributeTimeStampToken)
                            } else {
                                Ok(attr.values.get(0).unwrap().deref().clone().decode(|cons| {
                                    crate::asn1::rfc5652::SignedData::decode(cons)
                                })?)
                            }
                        })
                        .transpose()?;

                Some(UnsignedAttributes { time_stamp_token })
            } else {
                None
            };

        Ok(SignerInfo {
            issuer,
            serial_number,
            digest_algorithm,
            signature_algorithm,
            signature,
            signed_attributes,
            digested_signed_attributes_data,
            unsigned_attributes,
        })
    }
}

/// Represents the contents of a CMS SignedAttributes structure.
///
/// This is a high-level interface to the SignedAttributes ASN.1 type.
#[derive(Clone)]
pub struct SignedAttributes {
    /// The content type of the value being signed.
    ///
    /// This is often `OID_ID_DATA`.
    content_type: Oid,

    /// Holds the digest of the content that was signed.
    message_digest: Vec<u8>,

    /// The time the signature was created.
    signing_time: Option<chrono::DateTime<chrono::Utc>>,

    /// The raw ASN.1 signed attributes.
    raw: crate::asn1::rfc5652::SignedAttributes,
}

impl SignedAttributes {
    pub fn content_type(&self) -> &Oid {
        &self.content_type
    }

    pub fn message_digest(&self) -> &[u8] {
        &self.message_digest
    }

    pub fn signing_time(&self) -> Option<&chrono::DateTime<chrono::Utc>> {
        self.signing_time.as_ref()
    }

    pub fn attributes(&self) -> &crate::asn1::rfc5652::SignedAttributes {
        &self.raw
    }
}

impl Debug for SignedAttributes {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut s = f.debug_struct("SignedAttributes");
        s.field("content_type", &format_args!("{}", self.content_type));
        s.field(
            "message_digest",
            &format_args!("{}", hex::encode(&self.message_digest)),
        );
        s.field("signing_time", &self.signing_time);
        s.finish()
    }
}

#[derive(Clone, Debug)]
pub struct UnsignedAttributes {
    /// Time-Stamp Token from a Time-Stamp Protocol server.
    time_stamp_token: Option<crate::asn1::rfc5652::SignedData>,
}

#[cfg(test)]
mod tests {
    use {
        super::*,
        bcder::{encode::Values, Mode},
    };

    // This signature was extracted from the Firefox.app/Contents/MacOS/firefox
    // Mach-O executable on a aarch64 machine.
    const FIREFOX_SIGNATURE: &[u8] = include_bytes!("testdata/firefox.ber");

    const FIREFOX_CODE_DIRECTORY: &[u8] = include_bytes!("testdata/firefox-code-directory");

    #[test]
    fn parse_firefox() {
        let raw = crate::asn1::rfc5652::SignedData::decode_ber(FIREFOX_SIGNATURE).unwrap();

        // Try to round trip it.
        let mut buffer = Vec::new();
        raw.encode_ref()
            .write_encoded(Mode::Ber, &mut buffer)
            .unwrap();

        // The bytes aren't identical because we use definite length encoding, so we can't
        // compare that. But we can compare the parsed objects for equivalence.

        let raw2 = crate::asn1::rfc5652::SignedData::decode_ber(&buffer).unwrap();
        assert_eq!(raw, raw2, "BER round tripping is identical");
    }

    #[test]
    fn verify_firefox() {
        let signed_data = SignedData::parse_ber(FIREFOX_SIGNATURE).unwrap();

        for signer in signed_data.signers.iter() {
            signer
                .verify_signature_with_signed_data(&signed_data)
                .unwrap();

            // The message-digest does NOT match the encapsulated data in Apple code
            // signature's use of CMS. So digest verification will fail.
            signer
                .verify_message_digest_with_signed_data(&signed_data)
                .unwrap_err();

            // But we know what that value is. So plug it in to verify.
            signer
                .verify_message_digest_with_content(FIREFOX_CODE_DIRECTORY)
                .unwrap();

            // Now verify the time-stamp token embedded as an unsigned attribute.
            let tst_signed_data = signer.time_stamp_token_signed_data().unwrap().unwrap();

            for signer in tst_signed_data.signers() {
                signer
                    .verify_message_digest_with_signed_data(&tst_signed_data)
                    .unwrap();
                signer
                    .verify_signature_with_signed_data(&tst_signed_data)
                    .unwrap();
            }
        }
    }

    #[test]
    fn parse_no_certificate_version() {
        let signed = SignedData::parse_ber(include_bytes!("testdata/no-cert-version.ber")).unwrap();

        let cert_orig = signed.certificates().collect::<Vec<_>>()[0].clone();
        let cert = CapturedX509Certificate::from_der(cert_orig.encode_ber().unwrap()).unwrap();

        assert_eq!(
            hex::encode(cert.sha256_fingerprint().unwrap()),
            "b7c2eefd8dac7806af67dfcd92eb18126bc08312a7f2d6f3862e46013c7a6135"
        );
    }

    const IZZYSOFT_SIGNED_DATA: &[u8] = include_bytes!("testdata/izzysoft-signeddata");
    const IZZYSOFT_DATA: &[u8] = include_bytes!("testdata/izzysoft-data");

    #[test]
    fn verify_izzysoft() {
        let signed = SignedData::parse_ber(IZZYSOFT_SIGNED_DATA).unwrap();
        let cert = signed.certificates().next().unwrap();

        for signer in signed.signers() {
            // The signed data is external. So this method will fail since it isn't looking at
            // the correct source data.
            assert!(matches!(
                signer.verify_signature_with_signed_data(&signed),
                Err(CmsError::SignatureVerificationError)
            ));

            // There are no signed attributes. So this should error for that reason.
            assert!(matches!(
                signer.verify_message_digest_with_signed_data(&signed),
                Err(CmsError::NoSignedAttributes)
            ));

            assert!(matches!(
                signer.verify_message_digest_with_signed_data(&signed),
                Err(CmsError::NoSignedAttributes)
            ));

            // The certificate advertises SHA-256 for digests but the signature was made with
            // SHA-1. So the default algorithm choice will fail.
            assert!(matches!(
                cert.verify_signed_data(IZZYSOFT_DATA, signer.signature()),
                Err(X509CertificateError::CertificateSignatureVerificationFailed)
            ));

            // But it verifies when SHA-1 digests are forced!
            cert.verify_signed_data_with_algorithm(
                IZZYSOFT_DATA,
                signer.signature(),
                &ring::signature::RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY,
            )
            .unwrap();

            signer
                .verify_signature_with_signed_data_and_content(&signed, IZZYSOFT_DATA)
                .unwrap();

            let verifier = signer.signature_verifier(signed.certificates()).unwrap();
            verifier.verify(IZZYSOFT_DATA, signer.signature()).unwrap();
        }
    }
}