1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
//! Traits provided by this crate
mod sealed;
pub use num_traits::{
ConstZero, WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
};
pub(crate) use sealed::PrecomputeInverterWithAdjuster;
use crate::{Limb, NonZero, Odd, Reciprocal};
use core::fmt::{self, Debug};
use core::ops::{
Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign,
Mul, MulAssign, Neg, Not, Rem, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign,
};
use subtle::{
Choice, ConditionallySelectable, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess,
CtOption,
};
#[cfg(feature = "rand_core")]
use rand_core::CryptoRngCore;
/// Integers whose representation takes a bounded amount of space.
pub trait Bounded {
/// Size of this integer in bits.
const BITS: u32;
/// Size of this integer in bytes.
const BYTES: usize;
}
/// Trait for types which are conditionally selectable in constant time, similar to (and blanket impl'd for) `subtle`'s
/// [`ConditionallySelectable`] trait, but without the `Copy` bound which allows it to be impl'd for heap allocated
/// types such as `BoxedUint`.
///
/// It also provides generic implementations of conditional assignment and conditional swaps.
pub trait ConstantTimeSelect: Clone {
/// Select `a` or `b` according to `choice`.
///
/// # Returns
/// - `a` if `choice == Choice(0)`;
/// - `b` if `choice == Choice(1)`.
fn ct_select(a: &Self, b: &Self, choice: Choice) -> Self;
/// Conditionally assign `other` to `self`, according to `choice`.
#[inline]
fn ct_assign(&mut self, other: &Self, choice: Choice) {
*self = Self::ct_select(self, other, choice);
}
/// Conditionally swap `self` and `other` if `choice == 1`; otherwise, reassign both unto themselves.
#[inline]
fn ct_swap(a: &mut Self, b: &mut Self, choice: Choice) {
let t: Self = a.clone();
a.ct_assign(b, choice);
b.ct_assign(&t, choice);
}
}
impl<T: ConditionallySelectable> ConstantTimeSelect for T {
#[inline(always)]
fn ct_select(a: &Self, b: &Self, choice: Choice) -> Self {
T::conditional_select(a, b, choice)
}
#[inline(always)]
fn ct_assign(&mut self, other: &Self, choice: Choice) {
self.conditional_assign(other, choice)
}
#[inline(always)]
fn ct_swap(a: &mut Self, b: &mut Self, choice: Choice) {
T::conditional_swap(a, b, choice)
}
}
/// Integer trait: represents common functionality of integer types provided by this crate.
pub trait Integer:
'static
+ Add<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ AddMod<Output = Self>
+ AsRef<[Limb]>
+ BitAnd<Output = Self>
+ for<'a> BitAnd<&'a Self, Output = Self>
+ BitAndAssign
+ for<'a> BitAndAssign<&'a Self>
+ BitOr<Output = Self>
+ for<'a> BitOr<&'a Self, Output = Self>
+ BitOrAssign
+ for<'a> BitOrAssign<&'a Self>
+ BitXor<Output = Self>
+ for<'a> BitXor<&'a Self, Output = Self>
+ BitXorAssign
+ for<'a> BitXorAssign<&'a Self>
+ BitOps
+ CheckedAdd
+ CheckedSub
+ CheckedMul
+ CheckedDiv
+ Clone
+ ConstantTimeEq
+ ConstantTimeGreater
+ ConstantTimeLess
+ ConstantTimeSelect
+ Debug
+ Default
+ Div<NonZero<Self>, Output = Self>
+ for<'a> Div<&'a NonZero<Self>, Output = Self>
+ DivAssign<NonZero<Self>>
+ for<'a> DivAssign<&'a NonZero<Self>>
+ DivRemLimb
+ Eq
+ From<u8>
+ From<u16>
+ From<u32>
+ From<u64>
+ From<Limb>
+ Mul<Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ MulMod<Output = Self>
+ NegMod<Output = Self>
+ Not<Output = Self>
+ Ord
+ Rem<NonZero<Self>, Output = Self>
+ for<'a> Rem<&'a NonZero<Self>, Output = Self>
+ RemLimb
+ Send
+ Sized
+ Shl<u32, Output = Self>
+ ShlAssign<u32>
+ ShlVartime
+ Shr<u32, Output = Self>
+ ShrAssign<u32>
+ ShrVartime
+ Sub<Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ SubMod<Output = Self>
+ Sync
+ SquareRoot
+ WrappingAdd
+ WrappingSub
+ WrappingMul
+ WrappingNeg
+ WrappingShl
+ WrappingShr
+ Zero
{
/// The corresponding Montgomery representation,
/// optimized for the performance of modular operations at the price of a conversion overhead.
type Monty: Monty<Integer = Self>;
/// The value `1`.
fn one() -> Self;
/// The value `1` with the same precision as `other`.
fn one_like(other: &Self) -> Self {
Self::from_limb_like(Limb::ONE, other)
}
/// Returns an integer with the first limb set to `limb`, and the same precision as `other`.
fn from_limb_like(limb: Limb, other: &Self) -> Self;
/// Number of limbs in this integer.
fn nlimbs(&self) -> usize;
/// Is this integer value an odd number?
///
/// # Returns
///
/// If odd, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
fn is_odd(&self) -> Choice {
self.as_ref()
.first()
.map(|limb| limb.is_odd())
.unwrap_or_else(|| Choice::from(0))
}
/// Is this integer value an even number?
///
/// # Returns
///
/// If even, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
fn is_even(&self) -> Choice {
!self.is_odd()
}
}
/// Fixed-width integers.
pub trait FixedInteger: Bounded + ConditionallySelectable + Constants + Copy + Integer {
/// The number of limbs used on this platform.
const LIMBS: usize;
}
/// Compute the greatest common divisor of two integers.
pub trait Gcd<Rhs = Self>: Sized {
/// Output type.
type Output;
/// Compute the greatest common divisor of `self` and `rhs`.
///
/// Returns none unless `self` is odd (`rhs` may be even or odd)`.
fn gcd(&self, rhs: &Rhs) -> Self::Output;
}
/// Trait impl'd by precomputed modular inverters obtained via the [`PrecomputeInverter`] trait.
pub trait Inverter {
/// Output of an inversion.
type Output;
/// Compute a modular inversion, returning `None` if the result is undefined (i.e. if `value` is zero or isn't
/// prime relative to the modulus).
fn invert(&self, value: &Self::Output) -> CtOption<Self::Output>;
}
/// Obtain a precomputed inverter for efficiently computing modular inversions for a given modulus.
pub trait PrecomputeInverter {
/// Inverter type for integers of this size.
type Inverter: Inverter<Output = Self::Output> + Sized;
/// Output produced by the inverter.
type Output;
/// Obtain a precomputed inverter for `&self` as the modulus, using `Self::one()` as an adjusting parameter.
///
/// Returns `None` if `self` is even.
fn precompute_inverter(&self) -> Self::Inverter;
}
/// Zero values.
pub trait Zero: ConstantTimeEq + Sized {
/// The value `0`.
fn zero() -> Self;
/// Determine if this value is equal to zero.
///
/// # Returns
///
/// If zero, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
#[inline]
fn is_zero(&self) -> Choice {
self.ct_eq(&Self::zero())
}
/// Set `self` to its additive identity, i.e. `Self::zero`.
#[inline]
fn set_zero(&mut self) {
*self = Zero::zero();
}
/// Return the value `0` with the same precision as `other`.
fn zero_like(other: &Self) -> Self
where
Self: Clone,
{
let mut ret = other.clone();
ret.set_zero();
ret
}
}
impl<T: ConstZero + ConstantTimeEq> Zero for T {
#[inline(always)]
fn zero() -> T {
Self::ZERO
}
}
/// Trait for associating constant values with a type.
pub trait Constants: ConstZero {
/// The value `1`.
const ONE: Self;
/// Maximum value this integer can express.
const MAX: Self;
}
/// Random number generation support.
#[cfg(feature = "rand_core")]
pub trait Random: Sized {
/// Generate a cryptographically secure random value.
fn random(rng: &mut impl CryptoRngCore) -> Self;
}
/// Possible errors of the methods in [`RandomBits`] trait.
#[cfg(feature = "rand_core")]
#[derive(Debug)]
pub enum RandomBitsError {
/// An error of the internal RNG library.
RandCore(rand_core::Error),
/// The requested `bits_precision` does not match the size of the integer
/// corresponding to the type (in the cases where this is set in compile time).
BitsPrecisionMismatch {
/// The requested precision.
bits_precision: u32,
/// The compile-time size of the integer.
integer_bits: u32,
},
/// The requested `bit_length` is larger than `bits_precision`.
BitLengthTooLarge {
/// The requested bit length of the random number.
bit_length: u32,
/// The requested precision.
bits_precision: u32,
},
}
#[cfg(feature = "rand_core")]
impl fmt::Display for RandomBitsError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::RandCore(err) => write!(f, "{}", err),
Self::BitsPrecisionMismatch {
bits_precision,
integer_bits,
} => write!(
f,
concat![
"The requested `bits_precision` ({}) does not match ",
"the size of the integer corresponding to the type ({})"
],
bits_precision, integer_bits
),
Self::BitLengthTooLarge {
bit_length,
bits_precision,
} => write!(
f,
"The requested `bit_length` ({}) is larger than `bits_precision` ({}).",
bit_length, bits_precision
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for RandomBitsError {}
/// Random bits generation support.
#[cfg(feature = "rand_core")]
pub trait RandomBits: Sized {
/// Generate a cryptographically secure random value in range `[0, 2^bit_length)`.
///
/// A wrapper for [`RandomBits::try_random_bits`] that panics on error.
fn random_bits(rng: &mut impl CryptoRngCore, bit_length: u32) -> Self {
Self::try_random_bits(rng, bit_length).expect("try_random_bits() failed")
}
/// Generate a cryptographically secure random value in range `[0, 2^bit_length)`.
///
/// This method is variable time wrt `bit_length`.
fn try_random_bits(
rng: &mut impl CryptoRngCore,
bit_length: u32,
) -> Result<Self, RandomBitsError>;
/// Generate a cryptographically secure random value in range `[0, 2^bit_length)`,
/// returning an integer with the closest available size to `bits_precision`
/// (if the implementing type supports runtime sizing).
///
/// A wrapper for [`RandomBits::try_random_bits_with_precision`] that panics on error.
fn random_bits_with_precision(
rng: &mut impl CryptoRngCore,
bit_length: u32,
bits_precision: u32,
) -> Self {
Self::try_random_bits_with_precision(rng, bit_length, bits_precision)
.expect("try_random_bits_with_precision() failed")
}
/// Generate a cryptographically secure random value in range `[0, 2^bit_length)`,
/// returning an integer with the closest available size to `bits_precision`
/// (if the implementing type supports runtime sizing).
///
/// This method is variable time wrt `bit_length`.
fn try_random_bits_with_precision(
rng: &mut impl CryptoRngCore,
bit_length: u32,
bits_precision: u32,
) -> Result<Self, RandomBitsError>;
}
/// Modular random number generation support.
#[cfg(feature = "rand_core")]
pub trait RandomMod: Sized + Zero {
/// Generate a cryptographically secure random number which is less than
/// a given `modulus`.
///
/// This function uses rejection sampling, a method which produces an
/// unbiased distribution of in-range values provided the underlying
/// CSRNG is unbiased, but runs in variable-time.
///
/// The variable-time nature of the algorithm should not pose a security
/// issue so long as the underlying random number generator is truly a
/// CSRNG, where previous outputs are unrelated to subsequent
/// outputs and do not reveal information about the RNG's internal state.
fn random_mod(rng: &mut impl CryptoRngCore, modulus: &NonZero<Self>) -> Self;
}
/// Compute `self + rhs mod p`.
pub trait AddMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self + rhs mod p`.
///
/// Assumes `self` and `rhs` are `< p`.
fn add_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}
/// Compute `self - rhs mod p`.
pub trait SubMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self - rhs mod p`.
///
/// Assumes `self` and `rhs` are `< p`.
fn sub_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}
/// Compute `-self mod p`.
pub trait NegMod {
/// Output type.
type Output;
/// Compute `-self mod p`.
#[must_use]
fn neg_mod(&self, p: &Self) -> Self::Output;
}
/// Compute `self * rhs mod p`.
pub trait MulMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self * rhs mod p`.
fn mul_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}
/// Compute `1 / self mod p`.
pub trait InvMod: Sized {
/// Compute `1 / self mod p`.
fn inv_mod(&self, p: &Self) -> CtOption<Self>;
}
/// Checked addition.
pub trait CheckedAdd<Rhs = Self>: Sized {
/// Perform checked addition, returning a [`CtOption`] which `is_some` only if the operation
/// did not overflow.
fn checked_add(&self, rhs: &Rhs) -> CtOption<Self>;
}
/// Checked division.
pub trait CheckedDiv<Rhs = Self>: Sized {
/// Perform checked division, returning a [`CtOption`] which `is_some` only if the divisor is
/// non-zero.
fn checked_div(&self, rhs: &Rhs) -> CtOption<Self>;
}
/// Checked multiplication.
pub trait CheckedMul<Rhs = Self>: Sized {
/// Perform checked multiplication, returning a [`CtOption`] which `is_some`
/// only if the operation did not overflow.
fn checked_mul(&self, rhs: &Rhs) -> CtOption<Self>;
}
/// Checked subtraction.
pub trait CheckedSub<Rhs = Self>: Sized {
/// Perform checked subtraction, returning a [`CtOption`] which `is_some`
/// only if the operation did not underflow.
fn checked_sub(&self, rhs: &Rhs) -> CtOption<Self>;
}
/// Concatenate two numbers into a "wide" double-width value, using the `hi` value as the most
/// significant portion of the resulting value.
pub trait Concat: ConcatMixed<Self, MixedOutput = Self::Output> {
/// Concatenated output: twice the width of `Self`.
type Output: Integer;
/// Concatenate the two halves, with `self` as least significant and `hi` as the most significant.
fn concat(&self, hi: &Self) -> Self::Output {
self.concat_mixed(hi)
}
}
/// Concatenate two numbers into a "wide" combined-width value, using the `hi` value as the most
/// significant value.
pub trait ConcatMixed<Hi: ?Sized = Self> {
/// Concatenated output: combination of `Self` and `Hi`.
type MixedOutput: Integer;
/// Concatenate the two values, with `self` as least significant and `hi` as the most
/// significant.
fn concat_mixed(&self, hi: &Hi) -> Self::MixedOutput;
}
/// Split a number in half, returning the least significant half followed by the most significant.
pub trait Split: SplitMixed<Self::Output, Self::Output> {
/// Split output: low/high components of the value.
type Output;
/// Split this number in half, returning its low and high components respectively.
fn split(&self) -> (Self::Output, Self::Output) {
self.split_mixed()
}
}
/// Split a number into parts, returning the least significant part followed by the most
/// significant.
pub trait SplitMixed<Lo, Hi> {
/// Split this number into parts, returning its low and high components respectively.
fn split_mixed(&self) -> (Lo, Hi);
}
/// Encoding support.
pub trait Encoding: Sized {
/// Byte array representation.
type Repr: AsRef<[u8]>
+ AsMut<[u8]>
+ Copy
+ Clone
+ Sized
+ for<'a> TryFrom<&'a [u8], Error = core::array::TryFromSliceError>;
/// Decode from big endian bytes.
fn from_be_bytes(bytes: Self::Repr) -> Self;
/// Decode from little endian bytes.
fn from_le_bytes(bytes: Self::Repr) -> Self;
/// Encode to big endian bytes.
fn to_be_bytes(&self) -> Self::Repr;
/// Encode to little endian bytes.
fn to_le_bytes(&self) -> Self::Repr;
}
/// Possible errors in variable-time integer decoding methods.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum DecodeError {
/// The input value was empty.
Empty,
/// The input was not consistent with the format restrictions.
InvalidDigit,
/// Input size is too small to fit in the given precision.
InputSize,
/// The deserialized number is larger than the given precision.
Precision,
}
impl fmt::Display for DecodeError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Empty => write!(f, "empty value provided"),
Self::InvalidDigit => {
write!(f, "invalid digit character")
}
Self::InputSize => write!(f, "input size is too small to fit in the given precision"),
Self::Precision => write!(
f,
"the deserialized number is larger than the given precision"
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for DecodeError {}
/// Support for optimized squaring
pub trait Square {
/// Computes the same as `self * self`, but may be more efficient.
fn square(&self) -> Self;
}
/// Support for optimized squaring in-place
pub trait SquareAssign {
/// Computes the same as `self * self`, but may be more efficient.
/// Writes the result in `self`.
fn square_assign(&mut self);
}
/// Support for calucaling square roots.
pub trait SquareRoot {
/// Computes `floor(sqrt(self))`.
fn sqrt(&self) -> Self;
/// Computes `floor(sqrt(self))`, variable time in `self`.
fn sqrt_vartime(&self) -> Self;
}
/// Support for optimized division by a single limb.
pub trait DivRemLimb: Sized {
/// Computes `self / rhs` using a pre-made reciprocal,
/// returns the quotient (q) and remainder (r).
fn div_rem_limb(&self, rhs: NonZero<Limb>) -> (Self, Limb) {
self.div_rem_limb_with_reciprocal(&Reciprocal::new(rhs))
}
/// Computes `self / rhs`, returns the quotient (q) and remainder (r).
fn div_rem_limb_with_reciprocal(&self, reciprocal: &Reciprocal) -> (Self, Limb);
}
/// Support for optimized division by a single limb.
pub trait RemLimb: Sized {
/// Computes `self % rhs` using a pre-made reciprocal.
fn rem_limb(&self, rhs: NonZero<Limb>) -> Limb {
self.rem_limb_with_reciprocal(&Reciprocal::new(rhs))
}
/// Computes `self % rhs`.
fn rem_limb_with_reciprocal(&self, reciprocal: &Reciprocal) -> Limb;
}
/// Bit counting and bit operations.
pub trait BitOps {
/// Precision of this integer in bits.
fn bits_precision(&self) -> u32;
/// `floor(log2(self.bits_precision()))`.
fn log2_bits(&self) -> u32 {
u32::BITS - self.bits_precision().leading_zeros() - 1
}
/// Precision of this integer in bytes.
fn bytes_precision(&self) -> usize;
/// Calculate the number of bits needed to represent this number.
fn bit(&self, index: u32) -> Choice;
/// Sets the bit at `index` to 0 or 1 depending on the value of `bit_value`.
fn set_bit(&mut self, index: u32, bit_value: Choice);
/// Calculate the number of bits required to represent a given number.
fn bits(&self) -> u32 {
self.bits_precision() - self.leading_zeros()
}
/// Calculate the number of trailing zeros in the binary representation of this number.
fn trailing_zeros(&self) -> u32;
/// Calculate the number of trailing ones in the binary representation of this number.
fn trailing_ones(&self) -> u32;
/// Calculate the number of leading zeros in the binary representation of this number.
fn leading_zeros(&self) -> u32;
/// Returns `true` if the bit at position `index` is set, `false` otherwise.
///
/// # Remarks
/// This operation is variable time with respect to `index` only.
fn bit_vartime(&self, index: u32) -> bool;
/// Calculate the number of bits required to represent a given number in variable-time with
/// respect to `self`.
fn bits_vartime(&self) -> u32 {
self.bits_precision() - self.leading_zeros_vartime()
}
/// Sets the bit at `index` to 0 or 1 depending on the value of `bit_value`,
/// variable time in `self`.
fn set_bit_vartime(&mut self, index: u32, bit_value: bool);
/// Calculate the number of leading zeros in the binary representation of this number.
fn leading_zeros_vartime(&self) -> u32 {
self.bits_precision() - self.bits_vartime()
}
/// Calculate the number of trailing zeros in the binary representation of this number in
/// variable-time with respect to `self`.
fn trailing_zeros_vartime(&self) -> u32;
/// Calculate the number of trailing ones in the binary representation of this number,
/// variable time in `self`.
fn trailing_ones_vartime(&self) -> u32;
}
/// Constant-time exponentiation.
pub trait Pow<Exponent> {
/// Raises to the `exponent` power.
fn pow(&self, exponent: &Exponent) -> Self;
}
impl<T: PowBoundedExp<Exponent>, Exponent: Bounded> Pow<Exponent> for T {
fn pow(&self, exponent: &Exponent) -> Self {
self.pow_bounded_exp(exponent, Exponent::BITS)
}
}
/// Constant-time exponentiation with exponent of a bounded bit size.
pub trait PowBoundedExp<Exponent> {
/// Raises to the `exponent` power,
/// with `exponent_bits` representing the number of (least significant) bits
/// to take into account for the exponent.
///
/// NOTE: `exponent_bits` may be leaked in the time pattern.
fn pow_bounded_exp(&self, exponent: &Exponent, exponent_bits: u32) -> Self;
}
/// Performs modular multi-exponentiation using Montgomery's ladder.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
pub trait MultiExponentiate<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
/// Calculates `x1 ^ k1 * ... * xn ^ kn`.
fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self;
}
impl<T, Exponent, BasesAndExponents> MultiExponentiate<Exponent, BasesAndExponents> for T
where
T: MultiExponentiateBoundedExp<Exponent, BasesAndExponents>,
Exponent: Bounded,
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self {
Self::multi_exponentiate_bounded_exp(bases_and_exponents, Exponent::BITS)
}
}
/// Performs modular multi-exponentiation using Montgomery's ladder.
/// `exponent_bits` represents the number of bits to take into account for the exponent.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
///
/// NOTE: this value is leaked in the time pattern.
pub trait MultiExponentiateBoundedExp<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
/// Calculates `x1 ^ k1 * ... * xn ^ kn`.
fn multi_exponentiate_bounded_exp(
bases_and_exponents: &BasesAndExponents,
exponent_bits: u32,
) -> Self;
}
/// Constant-time inversion.
pub trait Invert: Sized {
/// Output of the inversion.
type Output;
/// Computes the inverse.
fn invert(&self) -> Self::Output;
}
/// Widening multiply: returns a value with a number of limbs equal to the sum of the inputs.
pub trait WideningMul<Rhs = Self>: Sized {
/// Output of the widening multiplication.
type Output: Integer;
/// Perform widening multiplication.
fn widening_mul(&self, rhs: Rhs) -> Self::Output;
}
/// Left shifts, variable time in `shift`.
pub trait ShlVartime: Sized {
/// Computes `self << shift`.
///
/// Returns `None` if `shift >= self.bits_precision()`.
fn overflowing_shl_vartime(&self, shift: u32) -> CtOption<Self>;
/// Computes `self << shift` in a panic-free manner, masking off bits of `shift`
/// which would cause the shift to exceed the type's width.
fn wrapping_shl_vartime(&self, shift: u32) -> Self;
}
/// Right shifts, variable time in `shift`.
pub trait ShrVartime: Sized {
/// Computes `self >> shift`.
///
/// Returns `None` if `shift >= self.bits_precision()`.
fn overflowing_shr_vartime(&self, shift: u32) -> CtOption<Self>;
/// Computes `self >> shift` in a panic-free manner, masking off bits of `shift`
/// which would cause the shift to exceed the type's width.
fn wrapping_shr_vartime(&self, shift: u32) -> Self;
}
/// A representation of an integer optimized for the performance of modular operations.
pub trait Monty:
'static
+ Clone
+ Debug
+ Eq
+ Sized
+ Send
+ Sync
+ Add<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ AddAssign
+ for<'a> AddAssign<&'a Self>
+ Sub<Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ SubAssign
+ for<'a> SubAssign<&'a Self>
+ Mul<Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ MulAssign
+ for<'a> MulAssign<&'a Self>
+ Neg<Output = Self>
+ PowBoundedExp<Self::Integer>
+ Square
+ SquareAssign
{
/// The original integer type.
type Integer: Integer<Monty = Self>;
/// The precomputed data needed for this representation.
type Params: 'static + Clone + Debug + Eq + Sized + Send + Sync;
/// Create the precomputed data for Montgomery representation of integers modulo `modulus`,
/// variable time in `modulus`.
fn new_params_vartime(modulus: Odd<Self::Integer>) -> Self::Params;
/// Convert the value into the representation using precomputed data.
fn new(value: Self::Integer, params: Self::Params) -> Self;
/// Returns zero in this representation.
fn zero(params: Self::Params) -> Self;
/// Returns one in this representation.
fn one(params: Self::Params) -> Self;
/// Returns the parameter struct used to initialize this object.
fn params(&self) -> &Self::Params;
/// Access the value in Montgomery form.
fn as_montgomery(&self) -> &Self::Integer;
/// Performs division by 2, that is returns `x` such that `x + x = self`.
fn div_by_2(&self) -> Self;
}