1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
use crate::{Limb, Uint, Word};
use super::{div_by_2::div_by_2, reduction::montgomery_reduction, Retrieve};
/// Additions between residues with a modulus set at runtime
mod runtime_add;
/// Multiplicative inverses of residues with a modulus set at runtime
mod runtime_inv;
/// Multiplications between residues with a modulus set at runtime
mod runtime_mul;
/// Negations of residues with a modulus set at runtime
mod runtime_neg;
/// Exponentiation of residues with a modulus set at runtime
mod runtime_pow;
/// Subtractions between residues with a modulus set at runtime
mod runtime_sub;
/// The parameters to efficiently go to and from the Montgomery form for a modulus provided at runtime.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct DynResidueParams<const LIMBS: usize> {
// The constant modulus
modulus: Uint<LIMBS>,
// Parameter used in Montgomery reduction
r: Uint<LIMBS>,
// R^2, used to move into Montgomery form
r2: Uint<LIMBS>,
// R^3, used to compute the multiplicative inverse
r3: Uint<LIMBS>,
// The lowest limbs of -(MODULUS^-1) mod R
// We only need the LSB because during reduction this value is multiplied modulo 2**Limb::BITS.
mod_neg_inv: Limb,
}
impl<const LIMBS: usize> DynResidueParams<LIMBS> {
/// Instantiates a new set of `ResidueParams` representing the given `modulus`.
pub const fn new(modulus: &Uint<LIMBS>) -> Self {
let r = Uint::MAX.const_rem(modulus).0.wrapping_add(&Uint::ONE);
let r2 = Uint::const_rem_wide(r.square_wide(), modulus).0;
// Since we are calculating the inverse modulo (Word::MAX+1),
// we can take the modulo right away and calculate the inverse of the first limb only.
let modulus_lo = Uint::<1>::from_words([modulus.limbs[0].0]);
let mod_neg_inv =
Limb(Word::MIN.wrapping_sub(modulus_lo.inv_mod2k(Word::BITS as usize).limbs[0].0));
let r3 = montgomery_reduction(&r2.square_wide(), modulus, mod_neg_inv);
Self {
modulus: *modulus,
r,
r2,
r3,
mod_neg_inv,
}
}
/// Returns the modulus which was used to initialize these parameters.
pub const fn modulus(&self) -> &Uint<LIMBS> {
&self.modulus
}
}
/// A residue represented using `LIMBS` limbs. The odd modulus of this residue is set at runtime.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct DynResidue<const LIMBS: usize> {
montgomery_form: Uint<LIMBS>,
residue_params: DynResidueParams<LIMBS>,
}
impl<const LIMBS: usize> DynResidue<LIMBS> {
/// Instantiates a new `Residue` that represents this `integer` mod `MOD`.
pub const fn new(integer: &Uint<LIMBS>, residue_params: DynResidueParams<LIMBS>) -> Self {
let product = integer.mul_wide(&residue_params.r2);
let montgomery_form = montgomery_reduction(
&product,
&residue_params.modulus,
residue_params.mod_neg_inv,
);
Self {
montgomery_form,
residue_params,
}
}
/// Retrieves the integer currently encoded in this `Residue`, guaranteed to be reduced.
pub const fn retrieve(&self) -> Uint<LIMBS> {
montgomery_reduction(
&(self.montgomery_form, Uint::ZERO),
&self.residue_params.modulus,
self.residue_params.mod_neg_inv,
)
}
/// Instantiates a new `Residue` that represents zero.
pub const fn zero(residue_params: DynResidueParams<LIMBS>) -> Self {
Self {
montgomery_form: Uint::<LIMBS>::ZERO,
residue_params,
}
}
/// Instantiates a new `Residue` that represents 1.
pub const fn one(residue_params: DynResidueParams<LIMBS>) -> Self {
Self {
montgomery_form: residue_params.r,
residue_params,
}
}
/// Returns the parameter struct used to initialize this residue.
pub const fn params(&self) -> &DynResidueParams<LIMBS> {
&self.residue_params
}
/// Performs the modular division by 2, that is for given `x` returns `y`
/// such that `y * 2 = x mod p`. This means:
/// - if `x` is even, returns `x / 2`,
/// - if `x` is odd, returns `(x + p) / 2`
/// (since the modulus `p` in Montgomery form is always odd, this divides entirely).
pub fn div_by_2(&self) -> Self {
Self {
montgomery_form: div_by_2(&self.montgomery_form, &self.residue_params.modulus),
residue_params: self.residue_params,
}
}
}
impl<const LIMBS: usize> Retrieve for DynResidue<LIMBS> {
type Output = Uint<LIMBS>;
fn retrieve(&self) -> Self::Output {
self.retrieve()
}
}