1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! This crate provides tools to help decode and encode various video codecs, leveraging the
//! hardware acceleration available on the target.
//!
//! The [codec] module contains tools to parse encoded video streams like H.264 or VP9 and extract
//! the information useful in order to perform e.g. hardware-accelerated decoding.
//!
//! The [backend] module contains common backend code. A backend is a provider of some way to
//! decode or encode a particular codec, like VAAPI.
//!
//! The [decoder] module contains decoders that can turn an encoded video stream into a sequence of
//! decoded frames using the hardware acceleration available on the host.
//!
//! The [utils] module contains some useful code that is shared between different parts of this
//! crate and didn't fit any of the modules above.
pub mod backend;
pub mod codec;
pub mod decoder;
pub mod utils;
use std::str::FromStr;
use byteorder::ByteOrder;
use byteorder::LittleEndian;
#[cfg(feature = "vaapi")]
pub use libva;
/// Rounding modes for `Resolution`
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ResolutionRoundMode {
/// Rounds component-wise to the next even value.
Even,
}
/// A frame resolution in pixels.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct Resolution {
pub width: u32,
pub height: u32,
}
impl Resolution {
/// Whether `self` can contain `other`.
pub fn can_contain(&self, other: Self) -> bool {
self.width >= other.width && self.height >= other.height
}
/// Rounds `self` according to `rnd_mode`.
pub fn round(mut self, rnd_mode: ResolutionRoundMode) -> Self {
match rnd_mode {
ResolutionRoundMode::Even => {
if self.width % 2 != 0 {
self.width += 1;
}
if self.height % 2 != 0 {
self.height += 1;
}
}
}
self
}
}
impl From<(u32, u32)> for Resolution {
fn from(value: (u32, u32)) -> Self {
Self {
width: value.0,
height: value.1,
}
}
}
impl From<Resolution> for (u32, u32) {
fn from(value: Resolution) -> Self {
(value.width, value.height)
}
}
/// Wrapper around u32 when they are meant to be a fourcc.
///
/// Provides conversion and display/debug implementations useful when dealing with fourcc codes.
#[derive(Clone, Copy)]
pub struct Fourcc(u32);
impl From<u32> for Fourcc {
fn from(fourcc: u32) -> Self {
Self(fourcc)
}
}
impl From<Fourcc> for u32 {
fn from(fourcc: Fourcc) -> Self {
fourcc.0
}
}
impl From<&[u8; 4]> for Fourcc {
fn from(n: &[u8; 4]) -> Self {
Self(n[0] as u32 | (n[1] as u32) << 8 | (n[2] as u32) << 16 | (n[3] as u32) << 24)
}
}
impl From<Fourcc> for [u8; 4] {
fn from(n: Fourcc) -> Self {
[
n.0 as u8,
(n.0 >> 8) as u8,
(n.0 >> 16) as u8,
(n.0 >> 24) as u8,
]
}
}
impl std::fmt::Display for Fourcc {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let c: [u8; 4] = (*self).into();
f.write_fmt(format_args!(
"{}{}{}{}",
c[0] as char, c[1] as char, c[2] as char, c[3] as char
))
}
}
impl std::fmt::Debug for Fourcc {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("0x{:08x} ({})", self.0, self))
}
}
/// Formats that buffers can be mapped into for the CPU to read.
///
/// The conventions here largely follow these of libyuv.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum DecodedFormat {
/// Y, U and V planes, 4:2:0 sampling, 8 bits per sample.
I420,
/// One Y and one interleaved UV plane, 4:2:0 sampling, 8 bits per sample.
NV12,
/// Y, U and V planes, 4:2:2 sampling, 8 bits per sample.
I422,
/// Y, U and V planes, 4:4:4 sampling, 8 bits per sample.
I444,
/// Y, U and V planes, 4:2:0 sampling, 16 bits per sample, LE. Only the 10 LSBs are used.
I010,
/// Y, U and V planes, 4:2:0 sampling, 16 bits per sample, LE. Only the 12 LSBs are used.
I012,
/// Y, U and V planes, 4:2:2 sampling, 16 bits per sample, LE. Only the 10 LSBs are used.
I210,
/// Y, U and V planes, 4:2:2 sampling, 16 bits per sample, LE. Only the 12 LSBs are used.
I212,
/// Y, U and V planes, 4:4:4 sampling, 16 bits per sample, LE. Only the 10 LSBs are used.
I410,
/// Y, U and V planes, 4:4:4 sampling, 16 bits per sample, LE. Only the 12 LSBs are used.
I412,
}
impl FromStr for DecodedFormat {
type Err = &'static str;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"i420" | "I420" => Ok(DecodedFormat::I420),
"i422" | "I422" => Ok(DecodedFormat::I422),
"i444" | "I444" => Ok(DecodedFormat::I444),
"nv12" | "NV12" => Ok(DecodedFormat::NV12),
"i010" | "I010" => Ok(DecodedFormat::I010),
"i012" | "I012" => Ok(DecodedFormat::I012),
"i210" | "I210" => Ok(DecodedFormat::I210),
"i212" | "I212" => Ok(DecodedFormat::I212),
"i410" | "I410" => Ok(DecodedFormat::I410),
"i412" | "I412" => Ok(DecodedFormat::I412),
_ => {
Err("unrecognized output format. Valid values: i420, nv12, i422, i444, i010, i012, i210, i212, i410, i412")
}
}
}
}
/// Describes the layout of a plane within a surface.
#[derive(Debug)]
pub struct PlaneLayout {
/// Index of the memory buffer the plane belongs to.
pub buffer_index: usize,
/// Start offset of the plane within its buffer.
pub offset: usize,
/// Distance in bytes between two lines of data in this plane.
pub stride: usize,
}
/// Unambiguously describes the layout of a surface.
///
/// A surface can be made of one or several memory buffers, each containing one or several planes.
/// For a given surface, this structure defines where each plane can be found.
#[derive(Debug)]
pub struct SurfaceLayout {
/// `(Fourcc, modifier)` tuple describing the arrangement of the planes.
///
/// This member is enough to infer how many planes and buffers the surface has, and which
/// buffer each plane belongs into.
pub format: (Fourcc, u64),
/// Size in pixels of the surface.
pub size: Resolution,
/// Layout of each individual plane.
pub planes: Vec<PlaneLayout>,
}
/// Build a surface memory descriptor enum that supports multiple descriptor types.
///
/// This is useful for the case where the surfaces' memory backing is not decided at compile-time.
/// In this case, this macro can be used to list all the potential types supported at run-time, and
/// the selected one can be built as the program is run.
///
/// # Example
///
/// ```
/// use cros_codecs::multiple_desc_type;
/// use cros_codecs::utils::DmabufSurface;
///
/// /// Surfaces' memory can be provided either by the backend, or via PRIME DMABUF handles.
/// multiple_desc_type! {
/// enum OwnedOrDmaDescriptor {
/// Owned(()),
/// Dmabuf(DmabufSurface),
/// }
/// }
/// ```
#[macro_export]
macro_rules! multiple_desc_type {
(enum $s:ident { $($v:ident($t:ty),)* } ) => {
enum $s {
$($v($t),)*
}
#[cfg(feature = "vaapi")]
impl libva::SurfaceMemoryDescriptor for $s {
fn add_attrs(&mut self, attrs: &mut Vec<libva::VASurfaceAttrib>) -> Option<Box<dyn std::any::Any>> {
match self {
$($s::$v(desc) => desc.add_attrs(attrs),)*
}
}
}
}
}
/// Copies `src` into `dst` as NV12, removing any extra padding.
pub fn nv12_copy(
src: &[u8],
dst: &mut [u8],
width: usize,
height: usize,
strides: [usize; 3],
offsets: [usize; 3],
) {
// Copy Y.
let src_y_lines = src[offsets[0]..]
.chunks(strides[0])
.map(|line| &line[..width]);
let dst_y_lines = dst.chunks_mut(width);
for (src_line, dst_line) in src_y_lines.zip(dst_y_lines).take(height) {
dst_line.copy_from_slice(src_line);
}
let dst_u_offset = width * height;
// Align width and height to 2 for UV plane.
// 1 sample per 4 pixels, but we have two components per line so width can remain as-is.
let uv_width = if width % 2 == 1 { width + 1 } else { width };
let uv_height = if height % 2 == 1 { height + 1 } else { height } / 2;
// Copy UV.
let src_uv_lines = src[offsets[1]..]
.chunks(strides[1])
.map(|line| &line[..uv_width]);
let dst_uv_lines = dst[dst_u_offset..].chunks_mut(uv_width);
for (src_line, dst_line) in src_uv_lines.zip(dst_uv_lines).take(uv_height) {
dst_line.copy_from_slice(src_line);
}
}
/// Copies `src` into `dst` as I4xx (YUV tri-planar).
///
/// This function does not change the data layout beyond removing any padding in the source, i.e.
/// both `src` and `dst` are 3-planar YUV buffers.
///
/// `strides` and `offsets` give the stride and starting position of each plane in `src`. In `dst`
/// each plane will be put sequentially one after the other.
///
/// `sub_h` and `sub_v` enable horizontal and vertical sub-sampling, respectively. E.g, if both
/// `sub_h` and `sub_v` are `true` the data will be `4:2:0`, if only `sub_v` is `true` then it will be
/// `4:2:2`, and if both are `false` then we have `4:4:4`.
pub fn i4xx_copy(
src: &[u8],
dst: &mut [u8],
width: usize,
height: usize,
strides: [usize; 3],
offsets: [usize; 3],
(sub_h, sub_v): (bool, bool),
) {
// Align width and height of UV planes to 2 if sub-sampling is used.
let uv_width = if sub_h { (width + 1) / 2 } else { width };
let uv_height = if sub_v { (height + 1) / 2 } else { height };
let dst_y_size = width * height;
let dst_u_size = uv_width * uv_height;
let (dst_y_plane, dst_uv_planes) = dst.split_at_mut(dst_y_size);
let (dst_u_plane, dst_v_plane) = dst_uv_planes.split_at_mut(dst_u_size);
// Copy Y.
let src_y_lines = src[offsets[0]..]
.chunks(strides[0])
.map(|line| &line[..width]);
let dst_y_lines = dst_y_plane.chunks_mut(width);
for (src_line, dst_line) in src_y_lines.zip(dst_y_lines).take(height) {
dst_line.copy_from_slice(src_line);
}
// Copy U.
let src_u_lines = src[offsets[1]..]
.chunks(strides[1])
.map(|line| &line[..uv_width]);
let dst_u_lines = dst_u_plane.chunks_mut(uv_width);
for (src_line, dst_line) in src_u_lines.zip(dst_u_lines).take(uv_height) {
dst_line.copy_from_slice(src_line);
}
// Copy V.
let src_v_lines = src[offsets[2]..]
.chunks(strides[2])
.map(|line| &line[..uv_width]);
let dst_v_lines = dst_v_plane.chunks_mut(uv_width);
for (src_line, dst_line) in src_v_lines.zip(dst_v_lines).take(uv_height) {
dst_line.copy_from_slice(src_line);
}
}
/// Returns the size required to store a frame of `format` with size `width`x`height`, without any
/// padding. This is the minimum size of the destination buffer passed to `nv12_copy` or
/// `i420_copy`.
pub fn decoded_frame_size(format: DecodedFormat, width: usize, height: usize) -> usize {
match format {
DecodedFormat::I420 | DecodedFormat::NV12 => {
let u_size = width * height;
// U and V planes need to be aligned to 2.
let uv_size = ((width + 1) / 2) * ((height + 1) / 2) * 2;
u_size + uv_size
}
DecodedFormat::I422 => {
let u_size = width * height;
// U and V planes need to be aligned to 2.
let uv_size = ((width + 1) / 2) * ((height + 1) / 2) * 2 * 2;
u_size + uv_size
}
DecodedFormat::I444 => (width * height) * 3,
DecodedFormat::I010 | DecodedFormat::I012 => {
decoded_frame_size(DecodedFormat::I420, width, height) * 2
}
DecodedFormat::I210 | DecodedFormat::I212 => {
let u_size = width * height * 2;
// U and V planes need to be aligned to 2.
let uv_size = ((width + 1) / 2) * ((height + 1) / 2) * 2 * 2;
u_size + uv_size
}
DecodedFormat::I410 | DecodedFormat::I412 => (width * height * 2) * 3,
}
}
/// Copies `src` into `dst` as I410, removing all padding and changing the layout from packed to
/// triplanar. Also drops the alpha channel.
fn y410_to_i410(
src: &[u8],
dst: &mut [u8],
width: usize,
height: usize,
strides: [usize; 3],
offsets: [usize; 3],
) {
let src_lines = src[offsets[0]..]
.chunks(strides[0])
.map(|line| &line[..width * 4]);
let dst_y_size = width * 2 * height;
let dst_u_size = width * 2 * height;
let (dst_y_plane, dst_uv_planes) = dst.split_at_mut(dst_y_size);
let (dst_u_plane, dst_v_plane) = dst_uv_planes.split_at_mut(dst_u_size);
let dst_y_lines = dst_y_plane.chunks_mut(width * 2);
let dst_u_lines = dst_u_plane.chunks_mut(width * 2);
let dst_v_lines = dst_v_plane.chunks_mut(width * 2);
for (src_line, (dst_y_line, (dst_u_line, dst_v_line))) in src_lines
.zip(dst_y_lines.zip(dst_u_lines.zip(dst_v_lines)))
.take(height)
{
for (src, (dst_y, (dst_u, dst_v))) in src_line.chunks(4).zip(
dst_y_line
.chunks_mut(2)
.zip(dst_u_line.chunks_mut(2).zip(dst_v_line.chunks_mut(2))),
) {
let y = LittleEndian::read_u16(&[src[1] >> 2 | src[2] << 6, src[2] >> 2 & 0b11]);
let u = LittleEndian::read_u16(&[src[0], src[1] & 0b11]);
let v = LittleEndian::read_u16(&[src[2] >> 4 | src[3] << 4, src[3] >> 4 & 0b11]);
LittleEndian::write_u16(dst_y, y);
LittleEndian::write_u16(dst_u, u);
LittleEndian::write_u16(dst_v, v);
}
}
}
#[cfg(test)]
mod tests {
use super::Fourcc;
const NV12_FOURCC: u32 = 0x3231564E;
#[test]
fn fourcc_u32() {
let fourcc = Fourcc::from(NV12_FOURCC);
let value: u32 = fourcc.into();
assert_eq!(value, NV12_FOURCC);
}
#[test]
fn fourcc_u8_4() {
let fourcc = Fourcc::from(NV12_FOURCC);
let value: [u8; 4] = fourcc.into();
assert_eq!(value, *b"NV12");
}
#[test]
fn fourcc_display() {
let fourcc = Fourcc::from(NV12_FOURCC);
assert_eq!(fourcc.to_string(), "NV12");
}
#[test]
fn fourcc_debug() {
let fourcc = Fourcc::from(NV12_FOURCC);
assert_eq!(format!("{:?}", fourcc), "0x3231564e (NV12)");
}
}