1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
// Copyright 2023 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Stateless decoders.
//!
//! Stateless here refers to the backend API targeted by these decoders. The decoders themselves do
//! hold the decoding state so the backend doesn't need to.
//!
//! The [`StatelessDecoder`] struct is the basis of all stateless decoders. It is created by
//! combining a codec codec to a [backend](crate::backend), after which bitstream units can be
//! submitted through the [`StatelessDecoder::decode`] method.
pub mod h264;
pub mod h265;
pub mod vp8;
pub mod vp9;
use thiserror::Error;
use crate::decoder::BlockingMode;
use crate::decoder::DecodedHandle;
use crate::decoder::DecoderEvent;
use crate::decoder::DecoderFormatNegotiator;
use crate::decoder::ReadyFramesQueue;
use crate::decoder::StreamInfo;
use crate::decoder::SurfacePool;
use crate::DecodedFormat;
use crate::Resolution;
/// Error returned by stateless backend methods.
#[derive(Error, Debug)]
pub enum StatelessBackendError {
#[error("not enough resources to proceed with the operation now")]
OutOfResources,
#[error("this format is not supported")]
UnsupportedFormat,
#[error(transparent)]
Other(#[from] anyhow::Error),
}
/// Result type returned by stateless backend methods.
pub type StatelessBackendResult<T> = Result<T, StatelessBackendError>;
/// Decoder implementations can use this struct to represent their decoding state.
///
/// `F` is a type containing the parsed stream format, that the decoder will use for format
/// negotiation with the client.
#[derive(Default)]
enum DecodingState<F> {
/// Decoder will ignore all input until format and resolution information passes by.
#[default]
AwaitingStreamInfo,
/// Decoder is stopped until the client has confirmed the output format.
AwaitingFormat(F),
/// Decoder is currently decoding input.
Decoding,
/// Decoder has been reset after a flush, and can resume with the current parameters after
/// seeing a key frame.
Reset,
}
/// Error returned by the [`StatelessVideoDecoder::decode`] method.
#[derive(Debug, Error)]
pub enum DecodeError {
#[error("not enough output buffers available to continue, need {0} more")]
NotEnoughOutputBuffers(usize),
#[error("cannot accept more input until pending events are processed")]
CheckEvents,
#[error("decoder error: {0}")]
DecoderError(#[from] anyhow::Error),
#[error("backend error: {0}")]
BackendError(#[from] StatelessBackendError),
}
mod private {
use super::*;
/// Private trait for methods we need to expose for crate types (e.g.
/// [`DecoderFormatNegotiator`]s), but don't want to be directly used by the client.
pub(super) trait StatelessVideoDecoder {
/// Try to apply `format` to output frames. If successful, all frames emitted after the
/// call will be in the new format.
fn try_format(&mut self, format: DecodedFormat) -> anyhow::Result<()>;
}
}
/// Common trait shared by all stateless video decoder backends, providing codec-independent
/// methods.
pub trait StatelessDecoderBackend<FormatInfo> {
/// The type that the backend returns as a result of a decode operation.
/// This will usually be some backend-specific type with a resource and a
/// resource pool so that said buffer can be reused for another decode
/// operation when it goes out of scope.
type Handle: DecodedHandle;
/// Backend-specific type representing a frame being decoded. Useful for decoders that need
/// to render a frame in several steps and to preserve its state in between.
type Picture;
/// Returns the current decoding parameters, as parsed from the stream.
fn stream_info(&self) -> Option<&StreamInfo>;
/// Returns the surface pool currently in use by the backend.
fn surface_pool(&mut self)
-> &mut dyn SurfacePool<<Self::Handle as DecodedHandle>::Descriptor>;
/// Try altering the decoded format.
fn try_format(&mut self, format_info: &FormatInfo, format: DecodedFormat)
-> anyhow::Result<()>;
}
/// Helper to implement [`DecoderFormatNegotiator`] for stateless decoders.
struct StatelessDecoderFormatNegotiator<'a, D, M, H, F>
where
D: StatelessVideoDecoder<M>,
F: Fn(&mut D, &H),
{
decoder: &'a mut D,
format_hint: H,
apply_format: F,
_mem_desc: std::marker::PhantomData<M>,
}
impl<'a, D, M, H, F> StatelessDecoderFormatNegotiator<'a, D, M, H, F>
where
D: StatelessVideoDecoder<M>,
F: Fn(&mut D, &H),
{
/// Creates a new format negotiator.
///
/// `decoder` is the decoder negotiation is done for. The decoder is exclusively borrowed as
/// long as this object exists.
///
/// `format_hint` is a codec-specific structure describing the properties of the format.
///
/// `apply_format` is a closure called when the object is dropped, and is responsible for
/// applying the format and allowing decoding to resume.
fn new(decoder: &'a mut D, format_hint: H, apply_format: F) -> Self {
Self {
decoder,
format_hint,
apply_format,
_mem_desc: std::marker::PhantomData,
}
}
}
impl<'a, D, M, H, F> DecoderFormatNegotiator<'a, M>
for StatelessDecoderFormatNegotiator<'a, D, M, H, F>
where
D: StatelessVideoDecoder<M> + private::StatelessVideoDecoder,
F: Fn(&mut D, &H),
{
/// Try to apply `format` to output frames. If successful, all frames emitted after the
/// call will be in the new format.
fn try_format(&mut self, format: DecodedFormat) -> anyhow::Result<()> {
self.decoder.try_format(format)
}
fn surface_pool(&mut self) -> &mut dyn SurfacePool<M> {
self.decoder.surface_pool()
}
fn stream_info(&self) -> &StreamInfo {
self.decoder.stream_info().unwrap()
}
}
impl<'a, D, M, H, F> Drop for StatelessDecoderFormatNegotiator<'a, D, M, H, F>
where
D: StatelessVideoDecoder<M>,
F: Fn(&mut D, &H),
{
fn drop(&mut self) {
(self.apply_format)(self.decoder, &self.format_hint)
}
}
/// Stateless video decoder interface.
///
/// A stateless decoder differs from a stateful one in that its input and output queues are not
/// operating independently: a new decode unit can only be processed if there is already an output
/// resource available to receive its decoded content.
///
/// Therefore [`decode`] can refuse work if there is no output resource
/// available at the time of calling, in which case the caller is responsible for calling
/// [`decode`] again with the same parameters after processing at least one
/// pending output frame and returning it to the decoder.
///
/// The `M` generic parameter is the type of the memory descriptor backing the output frames.
///
/// [`decode`]: StatelessVideoDecoder::decode
pub trait StatelessVideoDecoder<M> {
/// Try to decode the `bitstream` represented by `timestamp`.
///
/// This method will return [`DecodeError::CheckEvents`] if processing cannot take place until
/// pending events are handled. This could either be because a change of output format has
/// been detected that the client should acknowledge, or because there are no available output
/// resources and dequeueing and returning pending frames will fix that. After the cause has
/// been addressed, the client is responsible for calling this method again with the same data.
///
/// The return value is the number of bytes in `bitstream` that have been processed. Usually
/// this will be equal to the length of `bitstream`, but some codecs may only do partial
/// processing if e.g. several units are sent at the same time. It is the responsibility of the
/// caller to check that all submitted input has been processed, and to resubmit the
/// unprocessed part if it hasn't. See the documentation of each codec for their expectations.
fn decode(&mut self, timestamp: u64, bitstream: &[u8]) -> Result<usize, DecodeError>;
/// Flush the decoder i.e. finish processing all pending decode requests and make sure the
/// resulting frames are ready to be retrieved via [`next_event`].
///
/// Note that after flushing, a key frame must be submitted before decoding can resume.
///
/// [`next_event`]: StatelessVideoDecoder::next_event
fn flush(&mut self) -> Result<(), DecodeError>;
/// Returns the surface pool in use with the decoder. Useful to add new frames as decode.
/// targets.
fn surface_pool(&mut self) -> &mut dyn SurfacePool<M>;
fn stream_info(&self) -> Option<&StreamInfo>;
/// Returns the next event, if there is any pending.
fn next_event(&mut self) -> Option<DecoderEvent<M>>;
}
pub trait StatelessCodec {
/// Type providing current format information for the codec: resolution, color format, etc.
///
/// For H.264 this would be the Sps, for VP8 or VP9 the frame header.
type FormatInfo;
/// State that needs to be kept during a decoding operation, typed by backend.
type DecoderState<B: StatelessDecoderBackend<Self::FormatInfo>>;
}
/// A struct that serves as a basis to implement a stateless decoder.
///
/// A stateless decoder is defined by three generic parameters:
///
/// * A codec, represented by a type that implements [`StatelessCodec`]. This type defines the
/// codec-specific decoder state and other codec properties.
/// * A backend, i.e. an interface to talk to the hardware that accelerates decoding. An example is
/// the VAAPI backend that uses VAAPI for acceleration. The backend will typically itself be typed
/// against a memory decriptor, defining how memory is provided for decoded frames.
///
/// So for instance, a decoder for the H264 codec, using VAAPI for acceleration with self-managed
/// memory, will have the following type:
///
/// ```text
/// let decoder: StatelessDecoder<H264, VaapiBackend<()>>;
/// ```
///
/// This struct just manages the high-level decoder state as well as the queue of decoded frames.
/// All the rest is left to codec-specific code.
pub struct StatelessDecoder<C, B>
where
C: StatelessCodec,
B: StatelessDecoderBackend<C::FormatInfo>,
{
/// The current coded resolution
coded_resolution: Resolution,
/// Whether the decoder should block on decode operations.
blocking_mode: BlockingMode,
ready_queue: ReadyFramesQueue<B::Handle>,
decoding_state: DecodingState<C::FormatInfo>,
/// The backend used for hardware acceleration.
backend: B,
/// Codec-specific state.
codec: C::DecoderState<B>,
}
impl<C, B> StatelessDecoder<C, B>
where
C: StatelessCodec,
B: StatelessDecoderBackend<C::FormatInfo>,
C::DecoderState<B>: Default,
{
pub fn new(backend: B, blocking_mode: BlockingMode) -> Self {
Self {
backend,
blocking_mode,
coded_resolution: Default::default(),
decoding_state: Default::default(),
ready_queue: Default::default(),
codec: Default::default(),
}
}
}
impl<C, B> StatelessDecoder<C, B>
where
C: StatelessCodec,
B: StatelessDecoderBackend<C::FormatInfo>,
{
fn surface_pool(&mut self) -> &mut dyn SurfacePool<<B::Handle as DecodedHandle>::Descriptor> {
self.backend.surface_pool()
}
fn stream_info(&self) -> Option<&StreamInfo> {
self.backend.stream_info()
}
}
impl<C: StatelessCodec, B: StatelessDecoderBackend<C::FormatInfo>> private::StatelessVideoDecoder
for StatelessDecoder<C, B>
{
fn try_format(&mut self, format: crate::DecodedFormat) -> anyhow::Result<()> {
match &self.decoding_state {
DecodingState::AwaitingFormat(sps) => self.backend.try_format(sps, format),
_ => Err(anyhow::anyhow!(
"current decoder state does not allow format change"
)),
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use crate::decoder::stateless::StatelessVideoDecoder;
use crate::decoder::DecodedHandle;
/// Stream that can be used in tests, along with the CRC32 of all of its frames.
pub struct TestStream {
/// Bytestream to decode.
pub stream: &'static [u8],
/// Expected CRC for each frame, one per line.
pub crcs: &'static str,
}
/// Run the codec-specific `decoding_loop` on a `decoder` with a given `test`, linearly
/// decoding the stream until its end.
///
/// If `check_crcs` is `true`, then the expected CRCs of the decoded images are compared
/// against the existing result. We may want to set this to false when using a decoder backend
/// that does not produce actual frames.
///
/// `dump_yuv` will dump all the decoded frames into `/tmp/framexxx.yuv`. Set this to true in
/// order to debug the output of the test.
pub fn test_decode_stream<D, M, L>(
decoding_loop: L,
mut decoder: D,
test: &TestStream,
check_crcs: bool,
dump_yuv: bool,
) where
D: StatelessVideoDecoder<M>,
L: Fn(
&mut D,
&[u8],
&mut dyn FnMut(Box<dyn DecodedHandle<Descriptor = M>>),
) -> anyhow::Result<()>,
{
let mut crcs = test.crcs.lines().enumerate();
decoding_loop(&mut decoder, test.stream, &mut |handle| {
let (frame_num, expected_crc) = crcs.next().expect("decoded more frames than expected");
if check_crcs || dump_yuv {
handle.sync().unwrap();
let picture = handle.dyn_picture();
let mut backend_handle = picture.dyn_mappable_handle().unwrap();
let buffer_size = backend_handle.image_size();
let mut nv12 = vec![0; buffer_size];
backend_handle.read(&mut nv12).unwrap();
if dump_yuv {
std::fs::write(format!("/tmp/frame{:03}.yuv", frame_num), &nv12).unwrap();
}
if check_crcs {
let frame_crc = format!("{:08x}", crc32fast::hash(&nv12));
assert_eq!(frame_crc, expected_crc, "at frame {}", frame_num);
}
}
})
.unwrap();
assert_eq!(crcs.next(), None, "decoded less frames than expected");
}
}