1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
use rtrb::{Consumer, Producer, RingBuffer};
use std::path::PathBuf;
use super::data::{DataBlockCacheEntry, DataBlockEntry};
use super::error::{FatalReadError, ReadError};
use super::{
ClientToServerMsg, DataBlock, Decoder, HeapData, ReadData, ReadServer, ReadStreamOptions,
ServerToClientMsg,
};
use crate::{FileInfo, SERVER_WAIT_TIME};
/// Describes how to search for suitable caches when seeking in a [`ReadDiskStream`].
///
/// If a suitable cache is found, then reading can resume immediately. If not, then
/// the stream will need to buffer before it can read data. In this case, you may
/// decide to either continue reading (which will return silence) or to pause
/// playback temporarily.
///
/// [`ReadDiskStream`]: struct.ReadDiskStream.html
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum SeekMode {
/// Automatically search for a suitable cache to use. This is the default mode.
Auto,
/// Only try one cache with the given index. If you already know a suitable cache,
/// this can be more performant than searching each cache individually.
TryOne(usize),
/// Try the given cache with the given index, and if it is not suitable, automatically
/// search for a suitable one. If you already know a suitable cache, this can be
/// more performant than searching each cache individually.
TryOneThenAuto(usize),
/// Seek without searching for a suitable cache. This **will** cause the stream
/// to buffer.
NoCache,
}
impl Default for SeekMode {
fn default() -> Self {
SeekMode::Auto
}
}
/// A realtime-safe disk-streaming reader of audio files.
pub struct ReadDiskStream<D: Decoder> {
to_server_tx: Producer<ClientToServerMsg<D>>,
from_server_rx: Consumer<ServerToClientMsg<D>>,
close_signal_tx: Producer<Option<HeapData<D::T>>>,
heap_data: Option<HeapData<D::T>>,
current_block_index: usize,
next_block_index: usize,
current_block_start_frame: usize,
current_frame_in_block: usize,
temp_cache_index: usize,
temp_seek_cache_index: usize,
num_prefetch_blocks: usize,
prefetch_size: usize,
cache_size: usize,
block_size: usize,
file_info: FileInfo<D::FileParams>,
fatal_error: bool,
}
impl<D: Decoder> ReadDiskStream<D> {
/// Open a new realtime-safe disk-streaming reader.
///
/// * `file` - The path to the file to open.
/// * `start_frame` - The frame in the file to start reading from.
/// * `stream_opts` - Additional stream options.
pub fn new<P: Into<PathBuf>>(
file: P,
start_frame: usize,
stream_opts: ReadStreamOptions<D>,
) -> Result<ReadDiskStream<D>, D::OpenError> {
assert_ne!(stream_opts.block_size, 0);
assert_ne!(stream_opts.num_look_ahead_blocks, 0);
assert_ne!(stream_opts.server_msg_channel_size, Some(0));
// Reserve ample space for the message channels.
let msg_channel_size = stream_opts.server_msg_channel_size.unwrap_or(
((stream_opts.num_cache_blocks + stream_opts.num_look_ahead_blocks) * 4)
+ (stream_opts.num_caches * 4)
+ 8,
);
let (to_server_tx, from_client_rx) =
RingBuffer::<ClientToServerMsg<D>>::new(msg_channel_size);
let (to_client_tx, from_server_rx) =
RingBuffer::<ServerToClientMsg<D>>::new(msg_channel_size);
// Create dedicated close signal.
let (close_signal_tx, close_signal_rx) =
RingBuffer::<Option<HeapData<D::T>>>::new(1);
let file: PathBuf = file.into();
match ReadServer::new(
file,
start_frame,
stream_opts.num_cache_blocks + stream_opts.num_look_ahead_blocks,
stream_opts.block_size,
to_client_tx,
from_client_rx,
close_signal_rx,
stream_opts.additional_opts,
) {
Ok(file_info) => {
let client = ReadDiskStream::create(
to_server_tx,
from_server_rx,
close_signal_tx,
start_frame,
stream_opts.num_cache_blocks,
stream_opts.num_look_ahead_blocks,
stream_opts.num_caches,
stream_opts.block_size,
file_info,
);
Ok(client)
}
Err(e) => Err(e),
}
}
pub(crate) fn create(
to_server_tx: Producer<ClientToServerMsg<D>>,
from_server_rx: Consumer<ServerToClientMsg<D>>,
close_signal_tx: Producer<Option<HeapData<D::T>>>,
start_frame: usize,
num_cache_blocks: usize,
num_look_ahead_blocks: usize,
max_num_caches: usize,
block_size: usize,
file_info: FileInfo<D::FileParams>,
) -> Self {
let num_prefetch_blocks = num_cache_blocks + num_look_ahead_blocks;
let read_buffer = DataBlock::new(usize::from(file_info.num_channels), block_size);
// Reserve the last two caches as temporary caches.
let max_num_caches = max_num_caches + 2;
let mut caches: Vec<DataBlockCacheEntry<D::T>> = Vec::with_capacity(max_num_caches);
for _ in 0..max_num_caches {
caches.push(DataBlockCacheEntry {
cache: None,
wanted_start_frame: 0,
});
}
let temp_cache_index = max_num_caches - 1;
let temp_seek_cache_index = max_num_caches - 2;
let mut prefetch_buffer: Vec<DataBlockEntry<D::T>> =
Vec::with_capacity(num_prefetch_blocks);
let mut wanted_start_frame = start_frame;
for _ in 0..num_prefetch_blocks {
prefetch_buffer.push(DataBlockEntry {
use_cache_index: None,
block: None,
wanted_start_frame,
});
wanted_start_frame += block_size;
}
let heap_data = Some(HeapData {
read_buffer,
prefetch_buffer,
caches,
});
Self {
to_server_tx,
from_server_rx,
close_signal_tx,
heap_data,
current_block_index: 0,
next_block_index: 1,
current_block_start_frame: start_frame,
current_frame_in_block: 0,
temp_cache_index,
temp_seek_cache_index,
num_prefetch_blocks,
prefetch_size: num_prefetch_blocks * block_size,
cache_size: num_cache_blocks * block_size,
block_size,
file_info,
fatal_error: false,
}
}
/// Return the total number of caches available in this stream.
///
/// This is realtime-safe.
pub fn num_caches(&self) -> usize {
// This check should never fail because it can only be `None` in the destructor.
if let Some(heap) = &self.heap_data {
heap.caches.len() - 2
} else {
0
}
}
/// Returns whether a cache can be moved seamlessly without silencing current playback (true)
/// or not (false).
///
/// This is realtime-safe.
///
/// If the position of a cache is changed while the playback stream is currently relying on it,
/// then it will attempt to store the cache in a temporary buffer to allow playback to resume
/// seamlessly.
///
/// However, in the case where the cache is moved multiple times in quick succession while being
/// relied on, then any blocks relying on the oldest cache will be silenced. In this case, (false)
/// will be returned.
pub fn can_move_cache(&mut self, cache_index: usize) -> bool {
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_ref().unwrap();
let mut using_cache = false;
let mut using_temp_cache = false;
for block in &heap.prefetch_buffer {
if let Some(index) = block.use_cache_index {
if index == cache_index {
using_cache = true;
} else if index == self.temp_cache_index {
using_temp_cache = true;
}
}
}
!(using_cache && using_temp_cache)
}
/// Request to cache a new area in the file.
///
/// This is realtime-safe.
///
/// * `cache_index` - The index of the cache to use. Use `ReadDiskStream::num_caches()` to see
/// how many caches have been assigned to this stream.
/// * `start_frame` - The frame in the file to start filling in the cache from. If any portion lies
/// outside the end of the file, then that portion will be ignored.
///
/// If the cache already exists, then it will be overwritten. If the cache already starts from this
/// position, then nothing will be done and (false) will be returned. Otherwise, (true) will be
/// returned.
///
/// In the case where the position of a cache is changed while the playback stream is currently
/// relying on it, then it will attempt to store the cache in a temporary buffer to allow playback
/// to resume seamlessly.
///
/// However, in the case where the cache is moved multiple times in quick succession while being
/// relied on, then any blocks relying on the oldest cache will be silenced. See
/// `ReadDiskStream::can_move_cache()` to check if a cache can be seamlessly moved first.
pub fn cache(
&mut self,
cache_index: usize,
start_frame: usize,
) -> Result<bool, ReadError<D::FatalError>> {
if self.fatal_error {
return Err(ReadError::FatalError(FatalReadError::StreamClosed));
}
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
if cache_index >= heap.caches.len() - 2 {
return Err(ReadError::CacheIndexOutOfRange {
index: cache_index,
num_caches: heap.caches.len() - 2,
});
}
if start_frame != heap.caches[cache_index].wanted_start_frame
|| heap.caches[cache_index].cache.is_none()
{
// Check that at-least two message slots are open.
if self.to_server_tx.slots() < 2 + self.num_prefetch_blocks {
return Err(ReadError::IOServerChannelFull);
}
heap.caches[cache_index].wanted_start_frame = start_frame;
let mut cache = heap.caches[cache_index].cache.take();
// If any blocks are currently using this cache, then set this cache as the
// temporary cache and tell each block to use that instead.
let mut using_cache = false;
let mut using_temp_cache = false;
for block in heap.prefetch_buffer.iter_mut() {
if let Some(index) = block.use_cache_index {
if index == cache_index {
block.use_cache_index = Some(self.temp_cache_index);
using_cache = true;
} else if index == self.temp_cache_index {
using_temp_cache = true;
}
}
}
if using_cache {
if let Some(old_cache) = heap.caches[self.temp_cache_index].cache.take() {
// If any blocks are currently using the old temporary cache, dispose those blocks.
if using_temp_cache {
for block in heap.prefetch_buffer.iter_mut() {
if let Some(index) = block.use_cache_index {
if index == self.temp_cache_index {
block.use_cache_index = None;
if let Some(block) = block.block.take() {
// Tell the server to deallocate the old block.
// This cannot fail because we made sure that a slot is available in
// the previous step.
let _ = self
.to_server_tx
.push(ClientToServerMsg::DisposeBlock { block });
}
}
}
}
}
// Tell the server to deallocate the old temporary cache.
// This cannot fail because we made sure that a slot is available in
// the previous step.
let _ = self
.to_server_tx
.push(ClientToServerMsg::DisposeCache { cache: old_cache });
}
heap.caches[self.temp_cache_index].cache = cache.take();
}
// This cannot fail because we made sure that a slot is available in
// the previous step.
let _ = self.to_server_tx.push(ClientToServerMsg::Cache {
cache_index,
cache,
start_frame,
});
return Ok(true);
}
Ok(false)
}
/// Request to seek playback to a new position in the file.
///
/// This is realtime-safe.
///
/// * `frame` - The position in the file to seek to. If this lies outside of the end of
/// the file, then playback will return silence.
/// * `seek_mode` - Describes how to search for a suitable cache to use.
///
/// If a suitable cache is found, then (true) is returned meaning that playback can resume immediately
/// without any buffering. Otherwise (false) is returned meaning that playback will need to
/// buffer first. In this case, you may choose to continue reading (which will return silence), or
/// to pause playback temporarily.
pub fn seek(
&mut self,
frame: usize,
seek_mode: SeekMode,
) -> Result<bool, ReadError<D::FatalError>> {
if self.fatal_error {
return Err(ReadError::FatalError(FatalReadError::StreamClosed));
}
// Check that enough message slots are open.
if self.to_server_tx.slots() < 3 + self.num_prefetch_blocks {
return Err(ReadError::IOServerChannelFull);
}
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
let mut found_cache = None;
if let Some(cache_index) = match seek_mode {
SeekMode::TryOne(cache_index) => Some(cache_index),
SeekMode::TryOneThenAuto(cache_index) => Some(cache_index),
_ => None,
} {
if heap.caches[cache_index].cache.is_some() {
let cache_start_frame = heap.caches[cache_index].wanted_start_frame;
if frame == cache_start_frame
|| (frame > cache_start_frame && frame < cache_start_frame + self.cache_size)
{
found_cache = Some(cache_index);
}
}
}
if found_cache.is_none() {
let auto_search = match seek_mode {
SeekMode::Auto => true,
SeekMode::TryOneThenAuto(_) => true,
_ => false,
};
if auto_search {
// Check previous caches.
for i in 0..heap.caches.len() - 2 {
if heap.caches[i].cache.is_some() {
let cache_start_frame = heap.caches[i].wanted_start_frame;
if frame == cache_start_frame
|| (frame > cache_start_frame
&& frame < cache_start_frame + self.cache_size)
{
found_cache = Some(i);
break;
}
}
}
}
}
if let Some(cache_index) = found_cache {
// Find the position in the old cache.
let cache_start_frame = heap.caches[cache_index].wanted_start_frame;
let mut delta = frame - cache_start_frame;
let mut block_i = 0;
while delta >= self.block_size {
block_i += 1;
delta -= self.block_size
}
self.current_block_start_frame = cache_start_frame + (block_i * self.block_size);
self.current_frame_in_block = delta;
self.current_block_index = block_i;
self.next_block_index = block_i + 1;
if self.next_block_index >= self.num_prefetch_blocks {
self.next_block_index = 0;
}
// Tell remaining blocks to use the cache.
for i in block_i..heap.prefetch_buffer.len() {
heap.prefetch_buffer[i].use_cache_index = Some(cache_index);
}
// Request the server to start fetching blocks ahead of the cache.
// This cannot fail because we made sure that a slot is available in
// the previous step.
let mut wanted_start_frame = cache_start_frame + self.prefetch_size;
let _ = self.to_server_tx.push(ClientToServerMsg::SeekTo {
frame: wanted_start_frame,
});
// Fetch remaining blocks.
for i in 0..block_i {
// This cannot fail because we made sure there are enough slots available
// in the previous step.
let _ = self.to_server_tx.push(ClientToServerMsg::ReadIntoBlock {
block_index: i,
block: heap.prefetch_buffer[i].block.take(),
start_frame: wanted_start_frame,
});
heap.prefetch_buffer[i].use_cache_index = None;
heap.prefetch_buffer[i].wanted_start_frame = wanted_start_frame;
wanted_start_frame += self.block_size;
}
Ok(true)
} else {
// Create a new temporary seek cache.
// This cannot fail because we made sure that a slot is available in
// the previous step.
heap.caches[self.temp_seek_cache_index].wanted_start_frame = frame;
let _ = self.to_server_tx.push(ClientToServerMsg::Cache {
cache_index: self.temp_seek_cache_index,
cache: heap.caches[self.temp_seek_cache_index].cache.take(),
start_frame: frame,
});
// Start from beginning of new cache.
self.current_block_start_frame = frame;
self.current_frame_in_block = 0;
self.current_block_index = 0;
self.next_block_index = 1;
// Request the server to start fetching blocks ahead of the cache.
// This cannot fail because we made sure that a slot is available in
// the previous step.
let _ = self.to_server_tx.push(ClientToServerMsg::SeekTo {
frame: self.current_block_start_frame + self.prefetch_size,
});
// Tell each prefetch block to use the cache.
for block in heap.prefetch_buffer.iter_mut() {
block.use_cache_index = Some(self.temp_seek_cache_index);
}
Ok(false)
}
}
/// Returns true if the stream is finished buffering and there is data can be read
/// right now, false otherwise.
///
/// This is realtime-safe.
///
/// In the case where `false` is returned, then you may choose to continue reading
/// (which will return silence), or to pause playback temporarily.
pub fn is_ready(&mut self) -> Result<bool, ReadError<D::FatalError>> {
self.poll()?;
if self.to_server_tx.is_full() {
return Ok(false);
}
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_ref().unwrap();
// Check if the next two blocks are ready.
if let Some(cache_index) = heap.prefetch_buffer[self.current_block_index].use_cache_index {
// This check should never fail because it can only be `None` in the destructor.
if heap.caches[cache_index].cache.is_none() {
// Cache has not been recieved yet.
return Ok(false);
}
} else if heap.prefetch_buffer[self.current_block_index]
.block
.is_none()
{
// Block has not been recieved yet.
return Ok(false);
}
if let Some(cache_index) = heap.prefetch_buffer[self.next_block_index].use_cache_index {
// This check should never fail because it can only be `None` in the destructor.
if heap.caches[cache_index].cache.is_none() {
// Cache has not been recieved yet.
return Ok(false);
}
} else if heap.prefetch_buffer[self.next_block_index].block.is_none() {
// Block has not been recieved yet.
return Ok(false);
}
Ok(true)
}
/// Blocks the current thread until the stream is done buffering.
///
/// NOTE: This is ***not*** realtime-safe. This is only useful
/// for making sure a stream is ready before sending it to a realtime thread.
pub fn block_until_ready(&mut self) -> Result<(), ReadError<D::FatalError>> {
loop {
if self.is_ready()? {
break;
}
std::thread::sleep(SERVER_WAIT_TIME);
}
Ok(())
}
/// Blocks the current thread until the given buffer is filled.
///
/// NOTE: This is ***not*** realtime-safe.
///
/// This will start reading from the stream's current playhead (this can be changed
/// beforehand with `ReadDiskStream::seek()`). This is streaming, meaning the next call to
/// `fill_buffer_blocking()` or `ReadDiskStream::read()` will pick up from where the previous
/// call ended.
///
/// ## Returns
/// This will return the number of frames that were written to the buffer. This may be less
/// than the length of the buffer if the end of the file was reached, so use this as a check
/// if the entire buffer was filled or not.
///
/// ## Error
/// This will return an error if the number of channels in the buffer does not equal the number
/// of channels in the stream, if the length of each channel is not the same, or if there was
/// an internal error with reading the stream.
pub fn fill_buffer_blocking(
&mut self,
buffer: &mut [Vec<D::T>],
) -> Result<usize, ReadError<D::FatalError>> {
if buffer.len() != usize::from(self.file_info.num_channels) {
return Err(ReadError::InvalidBuffer);
}
let buffer_len = buffer[0].len();
// Sanity check that all channels are the same length.
for ch in buffer.iter().skip(1) {
if ch.len() != buffer_len {
return Err(ReadError::InvalidBuffer);
}
}
let mut frames_written = 0;
while frames_written < buffer_len {
let mut reached_end_of_file = false;
while self.is_ready()? {
let read_frames = (buffer_len - frames_written).min(self.block_size);
let read_data = self.read(read_frames)?;
for (i, ch) in buffer.iter_mut().enumerate() {
(*ch)[frames_written..frames_written + read_data.num_frames()]
.copy_from_slice(read_data.read_channel(i));
}
frames_written += read_data.num_frames();
if read_data.reached_end_of_file() {
reached_end_of_file = true;
break;
}
}
if reached_end_of_file {
break;
}
std::thread::sleep(SERVER_WAIT_TIME);
}
Ok(frames_written)
}
fn poll(&mut self) -> Result<(), ReadError<D::FatalError>> {
if self.fatal_error {
return Err(ReadError::FatalError(FatalReadError::StreamClosed));
}
// Retrieve any data sent from the server.
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
loop {
// Check that there is at-least one slot open before popping the next message.
if self.to_server_tx.is_full() {
return Err(ReadError::IOServerChannelFull);
}
if let Ok(msg) = self.from_server_rx.pop() {
match msg {
ServerToClientMsg::ReadIntoBlockRes {
block_index,
block,
wanted_start_frame,
} => {
let prefetch_block = &mut heap.prefetch_buffer[block_index];
// Only use results from the latest request.
if wanted_start_frame == prefetch_block.wanted_start_frame {
if let Some(prefetch_block) = prefetch_block.block.take() {
// Tell the IO server to deallocate the old block.
// This cannot fail because we made sure that a slot is available in
// a previous step.
let _ = self.to_server_tx.push(ClientToServerMsg::DisposeBlock {
block: prefetch_block,
});
}
// Store the new block into the prefetch buffer.
prefetch_block.block = Some(block);
} else {
// Tell the server to deallocate the block.
// This cannot fail because we made sure that a slot is available in
// a previous step.
let _ = self
.to_server_tx
.push(ClientToServerMsg::DisposeBlock { block });
}
}
ServerToClientMsg::CacheRes {
cache_index,
cache,
wanted_start_frame,
} => {
let cache_entry = &mut heap.caches[cache_index];
// Only use results from the latest request.
if wanted_start_frame == cache_entry.wanted_start_frame {
if let Some(cache_entry) = cache_entry.cache.take() {
// Tell the IO server to deallocate the old cache.
// This cannot fail because we made sure that a slot is available in
// a previous step.
let _ = self
.to_server_tx
.push(ClientToServerMsg::DisposeCache { cache: cache_entry });
}
// Store the new cache.
cache_entry.cache = Some(cache);
} else {
// Tell the server to deallocate the cache.
// This cannot fail because we made sure that a slot is available in
// a previous step.
let _ = self
.to_server_tx
.push(ClientToServerMsg::DisposeCache { cache });
}
}
ServerToClientMsg::FatalError(e) => {
self.fatal_error = true;
return Err(ReadError::FatalError(FatalReadError::DecoderError(e)));
}
}
} else {
break;
}
}
Ok(())
}
/// Read the next chunk of `frames` in the stream from the current playhead position.
///
/// This is realtime-safe.
///
/// This is *streaming*, meaning the next call to `read()` will pick up where the
/// previous call left off.
///
/// If the stream is currently buffering, (false) will be returned, and the playhead will still
/// advance but will output silence. Otherwise, data can be read and (true) is returned. To check
/// if the stream is ready beforehand, call `ReadDiskStream::is_ready()`.
///
/// If the end of a file is reached, then only the amount of frames up to the end will be returned,
/// and playback will return silence on each subsequent call to `read()`.
///
/// NOTE: If the number of `frames` exceeds the block size of the decoder, then that block size
/// will be used instead. This can be retrieved using `ReadDiskStream::block_size()`.
pub fn read(&mut self, mut frames: usize) -> Result<ReadData<D::T>, ReadError<D::FatalError>> {
if self.fatal_error {
return Err(ReadError::FatalError(FatalReadError::StreamClosed));
}
frames = frames.min(self.block_size);
self.poll()?;
// Check that there is at-least one slot open for when `advance_to_next_block()` is called.
if self.to_server_tx.is_full() {
return Err(ReadError::IOServerChannelFull);
}
// Check if the end of the file was reached.
if self.playhead() >= self.file_info.num_frames {
self.current_block_start_frame = 0;
self.current_frame_in_block = 0;
return Err(ReadError::EndOfFile);
}
let mut reached_end_of_file = false;
if self.playhead() + frames >= self.file_info.num_frames {
frames = self.file_info.num_frames - self.playhead();
reached_end_of_file = true;
}
let end_frame_in_block = self.current_frame_in_block + frames;
if end_frame_in_block > self.block_size {
// Data spans between two blocks, so two copies need to be performed.
// Copy from first block.
let first_len = self.block_size - self.current_frame_in_block;
let second_len = frames - first_len;
{
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
// Get the first block of data.
let current_block_data = {
let current_block = &heap.prefetch_buffer[self.current_block_index];
match current_block.use_cache_index {
Some(cache_index) => {
if let Some(cache) = &heap.caches[cache_index].cache {
Some(&cache.blocks[self.current_block_index])
} else {
// If cache is empty, output silence instead.
None
}
}
None => {
if let Some(block) = ¤t_block.block {
Some(block)
} else {
// TODO: warn of buffer underflow.
None
}
}
}
};
for i in 0..heap.read_buffer.block.len() {
let read_buffer_part = &mut heap.read_buffer.block[i][0..first_len];
if let Some(block) = current_block_data {
let from_buffer_part = &block.block[i]
[self.current_frame_in_block..self.current_frame_in_block + first_len];
read_buffer_part.copy_from_slice(from_buffer_part);
} else {
// Output silence.
for i in 0..first_len {
read_buffer_part[i] = Default::default();
}
};
}
// Keep this from growing indefinitely.
//self.current_block_start_frame = current_block_start_frame;
}
self.advance_to_next_block()?;
// Copy from second block
{
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
// Get the next block of data.
let next_block_data = {
let next_block = &heap.prefetch_buffer[self.current_block_index];
match next_block.use_cache_index {
Some(cache_index) => {
if let Some(cache) = &heap.caches[cache_index].cache {
Some(&cache.blocks[self.current_block_index])
} else {
// If cache is empty, output silence instead.
None
}
}
None => {
if let Some(block) = &next_block.block {
Some(block)
} else {
// TODO: warn of buffer underflow.
None
}
}
}
};
for i in 0..heap.read_buffer.block.len() {
let read_buffer_part =
&mut heap.read_buffer.block[i][first_len..first_len + second_len];
if let Some(block) = next_block_data {
let from_buffer_part = &block.block[i][0..second_len];
read_buffer_part.copy_from_slice(from_buffer_part);
} else {
// Output silence.
for i in 0..second_len {
read_buffer_part[i] = Default::default();
}
};
}
self.current_frame_in_block = second_len;
}
} else {
// Only need to copy from current block.
{
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
// Get the first block of data.
let current_block_data = {
let current_block = &heap.prefetch_buffer[self.current_block_index];
match current_block.use_cache_index {
Some(cache_index) => {
if let Some(cache) = &heap.caches[cache_index].cache {
Some(&cache.blocks[self.current_block_index])
} else {
// If cache is empty, output silence instead.
None
}
}
None => {
if let Some(block) = ¤t_block.block {
Some(block)
} else {
// TODO: warn of buffer underflow.
None
}
}
}
};
for i in 0..heap.read_buffer.block.len() {
let read_buffer_part = &mut heap.read_buffer.block[i][0..frames];
if let Some(block) = current_block_data {
let from_buffer_part = &block.block[i]
[self.current_frame_in_block..self.current_frame_in_block + frames];
read_buffer_part.copy_from_slice(from_buffer_part);
} else {
// Output silence.
for i in 0..frames {
read_buffer_part[i] = Default::default();
}
};
}
}
self.current_frame_in_block = end_frame_in_block;
if self.current_frame_in_block == self.block_size {
self.advance_to_next_block()?;
self.current_frame_in_block = 0;
}
}
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
// This check should never fail because it can only be `None` in the destructor.
Ok(ReadData::new(
&heap.read_buffer,
frames,
reached_end_of_file,
))
}
fn advance_to_next_block(&mut self) -> Result<(), ReadError<D::FatalError>> {
// This check should never fail because it can only be `None` in the destructor.
let heap = self.heap_data.as_mut().unwrap();
let entry = &mut heap.prefetch_buffer[self.current_block_index];
// Request a new block of data that is one block ahead of the
// latest block in the prefetch buffer.
let wanted_start_frame = self.current_block_start_frame + (self.prefetch_size);
entry.use_cache_index = None;
entry.wanted_start_frame = wanted_start_frame;
// This cannot fail because the caller function `read` makes sure there
// is at-least one slot open before calling this function.
let _ = self.to_server_tx.push(ClientToServerMsg::ReadIntoBlock {
block_index: self.current_block_index,
// Send block to be re-used by the IO server.
block: entry.block.take(),
start_frame: wanted_start_frame,
});
self.current_block_index += 1;
if self.current_block_index >= self.num_prefetch_blocks {
self.current_block_index = 0;
}
self.next_block_index += 1;
if self.next_block_index >= self.num_prefetch_blocks {
self.next_block_index = 0;
}
self.current_block_start_frame += self.block_size;
Ok(())
}
/// Return the current frame of the playhead.
///
/// This is realtime-safe.
pub fn playhead(&self) -> usize {
self.current_block_start_frame + self.current_frame_in_block
}
/// Return info about the file.
///
/// This is realtime-safe.
pub fn info(&self) -> &FileInfo<D::FileParams> {
&self.file_info
}
/// Return the block size used by this decoder.
///
/// This is realtime-safe.
pub fn block_size(&self) -> usize {
self.block_size
}
}
impl<D: Decoder> Drop for ReadDiskStream<D> {
fn drop(&mut self) {
// Tell the server to deallocate any heap data.
// This cannot fail because this is the only place the signal is ever sent.
let _ = self.close_signal_tx.push(self.heap_data.take());
}
}