Struct zmq_rs::Message [] [src]

pub struct Message {
    // some fields omitted
}

Methods

impl Message
[src]

fn new() -> Result<MessageError>

initialise empty 0MQ message.

Binding of int zmq_msg_init (zmq_msg_t *msg);.

The function will return a message object to represent an empty message. This function is most useful when called before receiving a message.

fn with_capcity(len: usize) -> Result<MessageError>

Initialise 0MQ message of a specified size.

Binding of int zmq_msg_init_size (zmq_msg_t *msg, size_t size);.

The function will allocate any resources required to store a message size bytes long and return a message object to represent the newly allocated message.

fn from_vec(vec: Vec<u8>) -> Result<MessageError>

Initialise 0MQ message from a supplied std::vec::Vec.

Binding of int zmq_msg_init_data (zmq_msg_t *msg, void *data, size_t size, zmq_free_fn *ffn, void *hint);.

The function will take ownership of the Vec and return a message object to represent the content referenced by the Vec.

No copy of data will be performed.

fn from_slice(data: &[u8]) -> Result<MessageError>

fn msg_move(dest: &mut Message, src: &mut Message) -> Result<()Error>

Move content of a message to another message.

Binding of int zmq_msg_move (zmq_msg_t *dest, zmq_msg_t *src);.

Move the content of the message object referenced by src to the message object referenced by dest. No actual copying of message content is performed, dest is simply updated to reference the new content. src becomes an empty message after calling Message::msg_move(). The original content of dest, if any, will be released

fn msg_copy(dest: &mut Message, src: &Message) -> Result<()Error>

Copy content of a message to another message.

Binding of int zmq_msg_copy (zmq_msg_t *dest, zmq_msg_t *src);.

Copy the message object referenced by src to the message object referenced by dest. The original content of dest, if any, will be released.

unsafe fn get_data_ptr(&mut self) -> *mut c_void

Retrieve pointer to message content.

Binding of void *zmq_msg_data (zmq_msg_t *msg);.

The function will return a pointer to the message content.

unsafe fn get_const_data_ptr(&self) -> *const c_void

Retrieve pointer to message content.

Binding of void *zmq_msg_data (zmq_msg_t *msg);.

The function will return a pointer to the message content.

fn len(&self) -> usize

Retrieve message content size in bytes

Binding of size_t zmq_msg_size (zmq_msg_t *msg);

The function will return the size in bytes of the content of the message.

fn has_more(&self) -> bool

Indicate if there are more message parts to receive

Binding of int zmq_msg_more (zmq_msg_t *message);

The function indicates whether this is part of a multi-part message, and there are further parts to receive. This method is identical to xxxxx with an argument of ZMQ_MORE.

fn get_property(&self, property: MessageProperty) -> Result<i32Error>

Get message property

Binding of int zmq_msg_get (zmq_msg_t *message, int property);

The function will return the value for the property specified by the property argument.

fn get_meta<'a>(&'a self, property: &str) -> Option<&'a str>

Get message metadata property

Binding of const char *zmq_msg_gets (zmq_msg_t *message, const char *property);

The function will return the string value for the metadata property specified by the property argument. Metadata is defined on a per-connection basis during the ZeroMQ connection handshake as specified in . The following ZMTP properties can be retrieved with the function: Socket-Type Identity Resource Additionally, when available for the underlying transport, the Peer-Address property will return the IP address of the remote endpoint as returned by getnameinfo(2). Other properties may be defined based on the underlying security mechanism.

Methods from Deref<Target=[u8]>

fn len(&self) -> usize
1.0.0

Returns the number of elements in the slice.

Example

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool
1.0.0

Returns true if the slice has a length of 0

Example

let a = [1, 2, 3];
assert!(!a.is_empty());

fn first(&self) -> Option<&T>
1.0.0

Returns the first element of a slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

fn first_mut(&mut self) -> Option<&mut T>
1.0.0

Returns a mutable pointer to the first element of a slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

fn split_first(&self) -> Option<(&T, &[T])>
1.5.0

Returns the first and all the rest of the elements of a slice.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0

Returns the first and all the rest of the elements of a slice.

Examples

let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);

fn split_last(&self) -> Option<(&T, &[T])>
1.5.0

Returns the last and all the rest of the elements of a slice.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0

Returns the last and all the rest of the elements of a slice.

Examples

let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);

fn last(&self) -> Option<&T>
1.0.0

Returns the last element of a slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

fn last_mut(&mut self) -> Option<&mut T>
1.0.0

Returns a mutable pointer to the last item in the slice.

Examples

let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

fn get(&self, index: usize) -> Option<&T>
1.0.0

Returns the element of a slice at the given index, or None if the index is out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(None, v.get(3));

fn get_mut(&mut self, index: usize) -> Option<&mut T>
1.0.0

Returns a mutable reference to the element at the given index.

Examples

let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);

or None if the index is out of bounds

unsafe fn get_unchecked(&self, index: usize) -> &T
1.0.0

Returns a pointer to the element at the given index, without doing bounds checking. So use it very carefully!

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
1.0.0

Returns an unsafe mutable pointer to the element in index. So use it very carefully!

Examples

let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);

fn as_ptr(&self) -> *const T
1.0.0

Returns an raw pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
    }
}

fn as_mut_ptr(&mut self) -> *mut T
1.0.0

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.offset(i as isize) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);

fn swap(&mut self, a: usize, b: usize)
1.0.0

Swaps two elements in a slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Examples

let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

fn reverse(&mut self)
1.0.0

Reverse the order of elements in a slice, in place.

Example

let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

fn iter(&self) -> Iter<T>
1.0.0

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

fn iter_mut(&mut self) -> IterMut<T>
1.0.0

Returns an iterator that allows modifying each value.

Examples

let x = &mut [1, 2, 4];
{
    let iterator = x.iter_mut();

    for elem in iterator {
        *elem += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);

fn windows(&self, size: usize) -> Windows<T>
1.0.0

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

fn chunks(&self, size: usize) -> Chunks<T>
1.0.0

Returns an iterator over size elements of the slice at a time. The chunks are slices and do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

Print the slice two elements at a time (i.e. [1,2], [3,4], [5]):

let v = &[1, 2, 3, 4, 5];

for chunk in v.chunks(2) {
    println!("{:?}", chunk);
}

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
1.0.0

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);

fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
1.0.0

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);

fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);

fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);

fn contains(&self, x: &T) -> bool where T: PartialEq<T>
1.0.0

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Binary search a sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

fn binary_search_by<F>(&self, f: F) -> Result<usizeusize> where F: FnMut(&T) -> Ordering
1.0.0

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

fn binary_search_by_key<B, F>(&self, b: &B, f: F) -> Result<usizeusize> where B: Ord, F: FnMut(&T) -> B
1.10.0

Binary search a sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1...4) => true, _ => false, });

fn sort(&mut self) where T: Ord
1.0.0

This is equivalent to self.sort_by(|a, b| a.cmp(b)).

This sort is stable and O(n log n) worst-case but allocates approximately 2 * n where n is the length of self.

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

fn sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B
1.7.0

Sorts the slice, in place, using key to extract a key by which to order the sort by.

This sort is stable and O(n log n) worst-case but allocates approximately 2 * n, where n is the length of self.

Examples

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
1.0.0

Sorts the slice, in place, using compare to compare elements.

This sort is stable and O(n log n) worst-case but allocates approximately 2 * n, where n is the length of self.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

fn clone_from_slice(&mut self, src: &[T]) where T: Clone
1.7.0

Copies the elements from src into self.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.clone_from_slice(&src);
assert!(dst == [1, 2, 3]);

fn copy_from_slice(&mut self, src: &[T]) where T: Copy
1.9.0

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.copy_from_slice(&src);
assert_eq!(src, dst);

fn to_vec(&self) -> Vec<T> where T: Clone
1.0.0

Copies self into a new Vec.

Examples

let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.

fn into_vec(self: Box<[T]>) -> Vec<T>
1.0.0

Converts self into a vector without clones or allocation.

Examples

let s: Box<[i32]> = Box::new([10, 40, 30]);
let x = s.into_vec();
// `s` cannot be used anymore because it has been converted into `x`.

assert_eq!(x, vec!(10, 40, 30));

Trait Implementations

impl Deref for Message
[src]

type Target = [u8]

The resulting type after dereferencing

fn deref<'a>(&'a self) -> &'a [u8]

The method called to dereference a value

impl DerefMut for Message
[src]

fn deref_mut<'a>(&'a mut self) -> &'a mut [u8]

The method called to mutably dereference a value

impl Drop for Message
[src]

fn drop(&mut self)

A method called when the value goes out of scope. Read more