1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
const DELTA: u32 = 0x9E3779B9;

fn to_bytes(v: &Vec<u32>, include_length: bool) -> Vec<u8> {
    let length: u32 = v.len() as u32;
    let mut n: u32 = length << 2;
    if include_length {
        let m: u32 = v[length as usize - 1];
        n = n - 4;
        assert!(!((m < n - 3) || (m > n)));
        n = m;
    }
    let mut bytes: Vec<u8> = vec![0; n as usize];
    for i in 0..n {
        bytes[i as usize] = (v[(i >> 2) as usize] >> ((i & 3) << 3)) as u8;
    }
    return bytes;
}


fn to_u32(bytes: &Vec<u8>, include_length: bool) -> Vec<u32> {
    let length: u32 = bytes.len() as u32;
    let mut n: u32 = length >> 2;
    if length & 3 != 0 {
        n = n + 1;
    }
    let mut v;
    if include_length {
        v = vec![0; n as usize + 1];
        v[n as usize] = length;
    } else {
        v = vec![0; n as usize];
    }
    for i in 0..length {
        v[(i >> 2) as usize] |= (bytes[i as usize] as u32) << ((i & 3) << 3) as u32;
    }
    return v;
}

fn mx(sum: u32, y: u32, z: u32, p: u32, e: u32, k: &Vec<u32>) -> u32 {
    ((z >> 5 ^ y << 2).wrapping_add(y >> 3 ^ z << 4)) ^ ((sum ^ y).wrapping_add(k[(p & 3 ^ e) as usize] ^ z))
}

fn fixk(k: &Vec<u32>) -> Vec<u32> {
    let mut key = k.clone();
    if key.len() < 4 {
        let length = key.len();
        for _ in length..4 {
            key.push(0)
        }
    }
    key
}

fn encrypt_(v: &mut Vec<u32>, k: &Vec<u32>) -> Vec<u32> {
    let length: u32 = v.len() as u32;
    let n: u32 = length - 1;
    let key: Vec<u32> = fixk(k);
    let mut e: u32;
    let mut y: u32;
    let mut z = v[n as usize];
    let mut sum: u32 = 0;
    let mut q: u32 = 6 + 52 / length;
    while q > 0 {
        sum = sum.wrapping_add(DELTA);
        e = sum >> 2 & 3;
        for p in 0..n {
            y = v[(p as usize) +1];
            v[p as usize] = v[p as usize].wrapping_add(mx(sum, y, z, (p as u32), e, &key));
            z = v[p as usize];
        }
        y = v[0];
        v[n as usize] = v[n as usize].wrapping_add(mx(sum, y, z, n, e, &key));
        z = v[n as usize];
        q = q - 1;
    }
    return v.clone();
}

fn decrypt_(v: &mut Vec<u32>, k: &Vec<u32>) -> Vec<u32>{
        let length: u32 = v.len() as u32;
        let n: u32 = length - 1;
        let key: Vec<u32> = fixk(k);
        let mut e: u32;
        let mut y: u32 = v[0];
        let mut z;
        let q: u32 = 6 + 52 / length;
        let mut sum: u32 = q.wrapping_mul(DELTA);
        while sum != 0 {
            e = sum >> 2 & 3;
            let mut p:usize = n as usize;
            while p > 0 {
                z = v[p - 1];
                v[p] = v[p].wrapping_sub(mx(sum, y, z, (p as u32), e, &key));
                y = v[p];
                p = p - 1;
            }
            z = v[n as usize];
            v[0] = v[0].wrapping_sub(mx(sum, y, z, 0, e, &key));
            y = v[0];
            sum = sum.wrapping_sub(DELTA);
        }
        return v.clone();
}

pub fn encrypt(data: &str, key: &str) -> Vec<u8> {
    let data = data.bytes().collect();
    let key = key.bytes().collect();
    to_bytes(&encrypt_(&mut to_u32(&data, true), &to_u32(&key, false)),
            false)
}

pub fn decrypt(data: &Vec<u8>, key: &str) -> Vec<u8> {
    let key = key.bytes().collect();
    to_bytes(&decrypt_(&mut to_u32(&data, false), &to_u32(&key, false)),
            true)
}

/// Encrypt a u8 vector with XXTEA
///
/// *Note:* XXTEA works on 32 bit words. If input is not evenly dividable by
/// four, it will be padded with zeroes. Padding information is lost after the
/// encryption and this needs to be taken into consideration when decrypting
/// messages.
///
/// # Arguments
///
/// * `data` - The data to be encrypted
/// * `key` - encryption key
///
/// # Example
///
/// ```
/// let key : &str = "SecretKey";
/// let data : [u8; 5] = [11, 13, 0, 14, 15];
///
/// let encrypted_data = xxtea::encrypt_raw(&data.to_vec(), &key);
/// // encrypted data will be 8 bytes (3 zeroes appended to the end)
/// println!("Encrypted data: {:?}", encrypted_data);
/// ```
///
pub fn encrypt_raw(data: &Vec<u8>, key: &str) -> Vec<u8> {
    let key = key.bytes().collect();
    to_bytes(&encrypt_(&mut to_u32(&data, false), &to_u32(&key, false)),
            false)
}

/// Decrypt a u8 vector with XXTEA
///
/// The output isn't verified for correctness, thus additional checks needs to
/// be performed on the output.
///
/// # Arguments
///
/// * `data` - The data to be decrypted
/// * `key` - encryption key
///
/// # Example
///
/// ```
/// let key : &str = "SecretKey";
/// let data : [u8; 5] = [11, 13, 0, 14, 15];
///
/// let decrypted_data = xxtea::decrypt_raw(&data.to_vec(), &key);
/// println!("Decrypted data: {:?}", decrypted_data);
/// ```
///
pub fn decrypt_raw(data: &Vec<u8>, key: &str) -> Vec<u8> {
    let key = key.bytes().collect();
    to_bytes(&decrypt_(&mut to_u32(&data, false), &to_u32(&key, false)),
            false)
}