1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//! Bloom filter for Rust - forked from https://github.com/jedisct1/rust-bloom-filter
//!
//! This is a simple but fast Bloom filter implementation, that requires only
//! 2 hash functions, generated with XXHash64 using randomized keys.

extern crate bit_vec;
extern crate rand;
extern crate twox_hash;
#[macro_use]
extern crate serde_derive;
extern crate serde;

use bit_vec::BitVec;
use std::cmp;
use std::f64;
use std::hash::{Hash, Hasher};
use twox_hash::XxHash64;

/// Bloom filter structure
pub struct Bloom {
    bitmap: BitVec,
    bitmap_size: u64,
    k: u64,
    seeds: (u64, u64),
    xx: (XxHash64, XxHash64),
}

#[derive(Serialize, Deserialize)]
pub struct SerdeBloom {
    bitmap: Vec<u8>,
    bitmap_size: u64,
    k: u64,
    seeds: (u64, u64)
}

impl Default for Bloom {
    fn default() -> Self {
        Bloom::new_with_rate(1_000_000, 1e-6)
    }
}

impl From<&Bloom> for SerdeBloom {
    fn from(bloom: &Bloom) -> Self {
        Self {
            bitmap: bloom.bitmap.to_bytes(),
            bitmap_size: bloom.bitmap_size,
            k: bloom.k,
            seeds: bloom.seeds
        }
    }
}

impl From<&SerdeBloom> for Bloom {
    fn from(serde_bloom: &SerdeBloom) -> Self {
        Bloom::from_existing(
            serde_bloom.bitmap.as_slice(),
            serde_bloom.bitmap_size,
            serde_bloom.k,
            serde_bloom.seeds
        )
    }
}

impl Bloom {
    /// Create a new bloom filter structure.
    /// bitmap_size is the size in bytes (not bits) that will be allocated in memory
    /// items_count is an estimation of the maximum number of items to store.
    pub fn new(bitmap_size: usize, items_count: usize) -> Self {
        assert!(bitmap_size > 0 && items_count > 0);
        let bitmap_size = (bitmap_size as u64) * 8u64;
        let k = Self::optimal_k_num(bitmap_size, items_count);
        let bitmap = BitVec::from_elem(bitmap_size as usize, false);
        let seeds = (rand::random(), rand::random());
        let xx = (Self::xx_new(seeds.0), Self::xx_new(seeds.1));
        Self {
            bitmap,
            bitmap_size,
            k,
            seeds,
            xx,
        }
    }

    /// Create a new bloom filter structure.
    /// items_count is an estimation of the maximum number of items to store.
    /// fp_p is the wanted rate of false positives, in ]0.0, 1.0[
    /// ```
    /// extern crate xx_bloomfilter;
    /// extern crate rand;
    ///
    /// use xx_bloomfilter::Bloom;
    ///
    /// let mut bloom = Bloom::new_with_rate(1_000_000, 1e-6);
    /// let item: u64 = rand::random();
    /// assert_eq!(false, bloom.check_and_add(&item));
    /// assert_eq!(true, bloom.check(&item));
    /// // Clear all values
    /// bloom.clear();
    /// assert_eq!(false, bloom.check_and_add(&item));
    /// ```
    pub fn new_with_rate(items_count: usize, fp_p: f64) -> Self {
        let bitmap_size = Self::compute_bitmap_size(items_count, fp_p);
        Bloom::new(bitmap_size, items_count)
    }

    pub fn from_existing_struct(other: &Bloom) -> Self {
        Self {
            bitmap: BitVec::from_bytes(other.bitmap().to_bytes().as_slice()),
            bitmap_size: other.bitmap_size,
            k: other.k,
            seeds: other.seeds,
            xx: other.xx(),
        }
    }


    /// Create a bloom filter structure with an existing state.
    /// The state is assumed to be retrieved from an existing bloom filter.
    pub fn from_existing(
        bitmap: &[u8],
        bitmap_size: u64,
        k: u64,
        seeds: (u64, u64)
    ) -> Self {
        let xx = (Self::xx_new(seeds.0), Self::xx_new(seeds.1));
        Self {
            bitmap: BitVec::from_bytes(bitmap),
            bitmap_size,
            k,
            seeds,
            xx,
        }
    }

    /// Compute a recommended bitmap size for items_count items
    /// and a fp_p rate of false positives.
    /// fp_p has to be within the ]0.0, 1.0[ range.
    pub fn compute_bitmap_size(items_count: usize, fp_p: f64) -> usize {
        assert!(items_count > 0);
        assert!(fp_p > 0.0 && fp_p < 1.0);
        let log2 = f64::consts::LN_2;
        let log2_2 = log2 * log2;
        ((items_count as f64) * f64::ln(fp_p) / (-8.0 * log2_2)).ceil() as usize
    }

    fn bit_offset(&self, hashes: (u64, u64), i_k: u64) -> usize {
        (self.double_hash(hashes, i_k) % self.bitmap_size) as usize
    }

    /// Record the presence of an item.
    pub fn add<T: Hash>(&mut self, item: &T) {
        let hashes = self.hashes(item);
//        let offsets = (0..self.k).map(|k| );
        for i_k in 0..self.k {
            let bit_offset = self.bit_offset(hashes, i_k);
            self.bitmap.set(bit_offset, true);
        }
    }

    /// Check if an item is present in the set.
    /// There can be false positives, but no false negatives.
    pub fn check<T: Hash>(&self, item: &T) -> bool {
        let hashes = self.hashes(item);
        for i_k in 0..self.k {
            let bit_offset = self.bit_offset(hashes, i_k);
            if !self.bitmap.get(bit_offset).unwrap_or_else(|| panic!("bit_offset {} not in bitmap!", bit_offset)) {
                return false;
            }
        }
        true
    }

    /// Record the presence of an item in the set,
    /// and return the previous state of this item.
    pub fn check_and_add<T: Hash>(&mut self, item: &T) -> bool {
        let hashes = self.hashes(item);
        let mut found = true;
        for i_k in 0..self.k {
            let bit_offset = self.bit_offset(hashes, i_k);
            if !self.bitmap.get(bit_offset).unwrap_or_else(|| panic!("bit_offset {} not in bitmap!", bit_offset)) {
                found = false;
                self.bitmap.set(bit_offset, true);
            }
        }
        found
    }

    /// Return the bitmap
    pub fn bitmap(&self) -> BitVec {
        self.bitmap.clone()
    }

    /// Return the number of bits in the filter
    pub fn number_of_bits(&self) -> u64 {
        self.bitmap_size
    }

    /// Return the number of hash functions used for `check` and `set`
    pub fn number_of_hash_functions(&self) -> u64 {
        self.k
    }

    pub fn xx(&self) -> (XxHash64, XxHash64) {
        self.xx
    }

    fn optimal_k_num(bitmap_size: u64, items_count: usize) -> u64 {
        let m = bitmap_size as f64;
        let n = items_count as f64;
        let k = (m / n * f64::ln(2.0f64)).ceil() as u64;
        cmp::max(k, 1)
    }

    fn hash1<T: Hash>(&self, t: &T) -> u64 {
        let mut hasher = self.xx().0;
        t.hash(&mut hasher);
        hasher.finish()
    }

    fn hash2<T: Hash>(&self, t: &T) -> u64 {
        let mut hasher = self.xx().1;
        t.hash(&mut hasher);
        hasher.finish()
    }

    fn hashes<T: Hash>(&self, t: &T) -> (u64, u64) {
        (self.hash1(t), self.hash2(t))
    }

    fn double_hash(&self, hashes: (u64, u64), i_k: u64) -> u64 {
        hashes.0.wrapping_add(i_k.wrapping_mul(hashes.1)) % self.bitmap_size
    }

    /// Clear all of the bits in the filter, removing all keys from the set
    pub fn clear(&mut self) {
        self.bitmap.clear()
    }

    fn xx_new(seed: u64) -> XxHash64 {
        XxHash64::with_seed(seed)
    }
}

#[test]
fn bloom_test_add() {
    let mut bloom = Bloom::default();
    let key: u64 = rand::random();
    assert_eq!(bloom.check(&key), false);
    bloom.add(&key);
    assert_eq!(bloom.check(&key), true);
}

#[test]
fn bloom_test_check_and_add() {
    let mut bloom = Bloom::default();
    let key: u64 = rand::random();
    assert_eq!(bloom.check_and_add(&key), false);
    assert_eq!(bloom.check_and_add(&key), true);
}

#[test]
fn bloom_test_clear() {
    let mut bloom = Bloom::default();
    let key: u64 = rand::random();
    bloom.add(&key);
    assert_eq!(bloom.check(&key), true);
    bloom.clear();
    assert_eq!(bloom.check(&key), false);
}

#[test]
fn bloom_test_load() {
    let mut original = Bloom::default();
    let key: u64 = rand::random();
    original.add(&key);
    assert_eq!(original.check(&key), true);

    let cloned = Bloom::from_existing(
        &original.bitmap().to_bytes(),
        original.number_of_bits(),
        original.number_of_hash_functions(),
        original.seeds,
    );
    assert_eq!(cloned.check(&key), true);
}

#[test]
fn bloom_test_load_struct() {
    let mut original = Bloom::default();
    let key: u64 = rand::random();
    original.add(&key);
    assert_eq!(original.check(&key), true);

    let cloned = Bloom::from_existing_struct(&original);
    assert_eq!(cloned.check(&key), true);
}


#[test]
fn bloom_test_serde() {
    let mut original = Bloom::default();
    let key: u64 = rand::random();
    original.add(&key);
    assert_eq!(original.check(&key), true);

    let serde = SerdeBloom::from(&original);

    let original = Bloom::from(&serde);
    assert_eq!(original.check(&key), true);
}