1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// Copyright 2016 The xi-editor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A module for representing spans (in an interval tree), useful for rich text
//! annotations. It is parameterized over a data type, so can be used for
//! storing different annotations.

use std::fmt;
use std::marker::PhantomData;
use std::mem;

use crate::delta::{Delta, DeltaElement, Transformer};
use crate::interval::{Interval, IntervalBounds};
use crate::tree::{Cursor, Leaf, Node, NodeInfo, TreeBuilder};

const MIN_LEAF: usize = 32;
const MAX_LEAF: usize = 64;

pub type Spans<T> = Node<SpansInfo<T>>;

#[derive(Clone)]
pub struct Span<T: Clone> {
    iv: Interval,
    data: T,
}

#[derive(Clone)]
pub struct SpansLeaf<T: Clone> {
    len: usize, // measured in base units
    spans: Vec<Span<T>>,
}

// It would be preferable to derive Default.
// This would however require T to implement Default due to an issue in Rust.
// See: https://github.com/rust-lang/rust/issues/26925
impl<T: Clone> Default for SpansLeaf<T> {
    fn default() -> Self {
        SpansLeaf { len: 0, spans: vec![] }
    }
}

#[derive(Clone)]
pub struct SpansInfo<T> {
    n_spans: usize,
    iv: Interval,
    phantom: PhantomData<T>,
}

impl<T: Clone> Leaf for SpansLeaf<T> {
    fn len(&self) -> usize {
        self.len
    }

    fn is_ok_child(&self) -> bool {
        self.spans.len() >= MIN_LEAF
    }

    fn push_maybe_split(&mut self, other: &Self, iv: Interval) -> Option<Self> {
        let iv_start = iv.start();
        for span in &other.spans {
            let span_iv = span.iv.intersect(iv).translate_neg(iv_start).translate(self.len);
            if !span_iv.is_empty() {
                self.spans.push(Span { iv: span_iv, data: span.data.clone() });
            }
        }
        self.len += iv.size();

        if self.spans.len() <= MAX_LEAF {
            None
        } else {
            let splitpoint = self.spans.len() / 2; // number of spans
            let splitpoint_units = self.spans[splitpoint].iv.start();
            let mut new = self.spans.split_off(splitpoint);
            for span in &mut new {
                span.iv = span.iv.translate_neg(splitpoint_units);
            }
            let new_len = self.len - splitpoint_units;
            self.len = splitpoint_units;
            Some(SpansLeaf { len: new_len, spans: new })
        }
    }
}

impl<T: Clone> NodeInfo for SpansInfo<T> {
    type L = SpansLeaf<T>;

    fn accumulate(&mut self, other: &Self) {
        self.n_spans += other.n_spans;
        self.iv = self.iv.union(other.iv);
    }

    fn compute_info(l: &SpansLeaf<T>) -> Self {
        let mut iv = Interval::new(0, 0); // should be Interval::default?
        for span in &l.spans {
            iv = iv.union(span.iv);
        }
        SpansInfo { n_spans: l.spans.len(), iv, phantom: PhantomData }
    }
}

pub struct SpansBuilder<T: Clone> {
    b: TreeBuilder<SpansInfo<T>>,
    leaf: SpansLeaf<T>,
    len: usize,
    total_len: usize,
}

impl<T: Clone> SpansBuilder<T> {
    pub fn new(total_len: usize) -> Self {
        SpansBuilder { b: TreeBuilder::new(), leaf: SpansLeaf::default(), len: 0, total_len }
    }

    // Precondition: spans must be added in nondecreasing start order.
    // Maybe take Span struct instead of separate iv, data args?
    pub fn add_span<IV: IntervalBounds>(&mut self, iv: IV, data: T) {
        let iv = iv.into_interval(self.total_len);
        if self.leaf.spans.len() == MAX_LEAF {
            let mut leaf = mem::replace(&mut self.leaf, SpansLeaf::default());
            leaf.len = iv.start() - self.len;
            self.len = iv.start();
            self.b.push(Node::from_leaf(leaf));
        }
        self.leaf.spans.push(Span { iv: iv.translate_neg(self.len), data })
    }

    // Would make slightly more implementation sense to take total_len as an argument
    // here, but that's not quite the usual builder pattern.
    pub fn build(mut self) -> Spans<T> {
        self.leaf.len = self.total_len - self.len;
        self.b.push(Node::from_leaf(self.leaf));
        self.b.build()
    }
}

pub struct SpanIter<'a, T: 'a + Clone> {
    cursor: Cursor<'a, SpansInfo<T>>,
    ix: usize,
}

impl<T: Clone> Spans<T> {
    /// Perform operational transformation on a spans object intended to be edited into
    /// a sequence at the given offset.

    // Note: this implementation is not efficient for very large Spans objects, as it
    // traverses all spans linearly. A more sophisticated approach would be to traverse
    // the tree, and only delve into subtrees that are transformed.
    pub fn transform<N: NodeInfo>(
        &self,
        base_start: usize,
        base_end: usize,
        xform: &mut Transformer<N>,
    ) -> Self {
        // TODO: maybe should take base as an Interval and figure out "after" from that
        let new_start = xform.transform(base_start, false);
        let new_end = xform.transform(base_end, true);
        let mut builder = SpansBuilder::new(new_end - new_start);
        for (iv, data) in self.iter() {
            let start = xform.transform(iv.start() + base_start, false) - new_start;
            let end = xform.transform(iv.end() + base_start, false) - new_start;
            if start < end {
                let iv = Interval::new(start, end);
                // TODO: could imagine using a move iterator and avoiding clone, but it's not easy.
                builder.add_span(iv, data.clone());
            }
        }
        builder.build()
    }

    /// Creates a new Spans instance by merging spans from `other` with `self`,
    /// using a closure to transform values.
    ///
    /// New spans are created from non-overlapping regions of existing spans,
    /// and by combining overlapping regions into new spans. In all cases,
    /// new values are generated by calling a closure that transforms the
    /// value of the existing span or spans.
    ///
    /// # Panics
    ///
    /// Panics if `self` and `other` have different lengths.
    ///
    pub fn merge<F, O>(&self, other: &Self, mut f: F) -> Spans<O>
    where
        F: FnMut(&T, Option<&T>) -> O,
        O: Clone,
    {
        //TODO: confirm that this is sensible behaviour
        assert_eq!(self.len(), other.len());
        let mut sb = SpansBuilder::new(self.len());

        // red/blue is just a better name than one/two or me/other
        let mut iter_red = self.iter();
        let mut iter_blue = other.iter();

        let mut next_red = iter_red.next();
        let mut next_blue = iter_blue.next();

        loop {
            // exit conditions:
            if next_red.is_none() && next_blue.is_none() {
                // all merged.
                break;
            } else if next_red.is_none() != next_blue.is_none() {
                // one side is exhausted; append remaining items from other side.
                let iter = if next_red.is_some() { iter_red } else { iter_blue };
                // add this item
                let (iv, val) = next_red.or(next_blue).unwrap();
                sb.add_span(iv, f(val, None));

                for (iv, val) in iter {
                    sb.add_span(iv, f(val, None))
                }
                break;
            }

            // body:
            let (mut red_iv, red_val) = next_red.unwrap();
            let (mut blue_iv, blue_val) = next_blue.unwrap();

            if red_iv.intersect(blue_iv).is_empty() {
                // spans do not overlap. Add the leading span & advance that iter.
                if red_iv.is_before(blue_iv.start()) {
                    sb.add_span(red_iv, f(red_val, None));
                    next_red = iter_red.next();
                } else {
                    sb.add_span(blue_iv, f(blue_val, None));
                    next_blue = iter_blue.next();
                }
                continue;
            }
            assert!(!red_iv.intersect(blue_iv).is_empty());

            // if these two spans do not share a start point, create a new span from
            // the prefix of the leading span.
            if red_iv.start() < blue_iv.start() {
                let iv = red_iv.prefix(blue_iv);
                sb.add_span(iv, f(red_val, None));
                red_iv = red_iv.suffix(iv);
            } else if blue_iv.start() < red_iv.start() {
                let iv = blue_iv.prefix(red_iv);
                sb.add_span(iv, f(blue_val, None));
                blue_iv = blue_iv.suffix(iv);
            }

            assert!(red_iv.start() == blue_iv.start());
            // create a new span by merging the overlapping regions.
            let iv = red_iv.intersect(blue_iv);
            assert!(!iv.is_empty());
            sb.add_span(iv, f(red_val, Some(blue_val)));

            // if an old span was consumed by this new span, advance
            // else reuse remaining span (set next_red/blue) for the next loop iteration
            red_iv = red_iv.suffix(iv);
            blue_iv = blue_iv.suffix(iv);
            assert!(red_iv.is_empty() || blue_iv.is_empty());

            if red_iv.is_empty() {
                next_red = iter_red.next();
            } else {
                next_red = Some((red_iv, red_val));
            }

            if blue_iv.is_empty() {
                next_blue = iter_blue.next();
            } else {
                next_blue = Some((blue_iv, blue_val));
            }
        }
        sb.build()
    }

    // possible future: an iterator that takes an interval, so results are the same as
    // taking a subseq on the spans object. Would require specialized Cursor.
    pub fn iter(&self) -> SpanIter<T> {
        SpanIter { cursor: Cursor::new(self, 0), ix: 0 }
    }

    /// Applies a generic delta to `self`, inserting empty spans for any
    /// added regions.
    ///
    /// This is intended to be used to keep spans up to date with a `Rope`
    /// as edits occur.
    pub fn apply_shape<M: NodeInfo>(&mut self, delta: &Delta<M>) {
        let mut b = TreeBuilder::new();
        for elem in &delta.els {
            match *elem {
                DeltaElement::Copy(beg, end) => b.push(self.subseq(Interval::new(beg, end))),
                DeltaElement::Insert(ref n) => b.push(SpansBuilder::new(n.len()).build()),
            }
        }
        *self = b.build();
    }

    // FIXME: Instead of iterating through all spans every time, another option would be to go
    // leaf-by-leaf, and check each leaf for whether or not it has any items in the interval;
    // if they don't we keep them unchanged, otherwise we do this operation, but only within the leaf.
    //
    /// Deletes all spans that intersect with `interval`.
    pub fn delete_intersecting(&mut self, interval: Interval) {
        let mut builder = SpansBuilder::new(self.len());
        for (iv, data) in self.iter() {
            // check if spans overlaps with interval
            if iv.intersect(interval).is_empty() {
                // keep the ones that are not overlapping
                builder.add_span(iv, data.clone());
            }
        }
        *self = builder.build();
    }
}

impl<T: Clone + fmt::Debug> fmt::Debug for Spans<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let strs =
            self.iter().map(|(iv, val)| format!("{}: {:?}", iv, val)).collect::<Vec<String>>();
        write!(f, "len: {}\nspans:\n\t{}", self.len(), &strs.join("\n\t"))
    }
}

impl<'a, T: Clone> Iterator for SpanIter<'a, T> {
    type Item = (Interval, &'a T);

    fn next(&mut self) -> Option<(Interval, &'a T)> {
        if let Some((leaf, start_pos)) = self.cursor.get_leaf() {
            if leaf.spans.is_empty() {
                return None;
            }
            let leaf_start = self.cursor.pos() - start_pos;
            let span = &leaf.spans[self.ix];
            self.ix += 1;
            if self.ix == leaf.spans.len() {
                let _ = self.cursor.next_leaf();
                self.ix = 0;
            }
            return Some((span.iv.translate(leaf_start), &span.data));
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]

    fn test_merge() {
        // merging 1 1 1 1 1 1 1 1 1 16
        // with    2 2 4 4     8 8
        // ==      3 3 5 5 1 1 9 9 1 16
        let mut sb = SpansBuilder::new(10);
        sb.add_span(Interval::new(0, 9), 1u32);
        sb.add_span(Interval::new(9, 10), 16);
        let red = sb.build();

        let mut sb = SpansBuilder::new(10);
        sb.add_span(Interval::new(0, 2), 2);
        sb.add_span(Interval::new(2, 4), 4);
        sb.add_span(Interval::new(6, 8), 8);
        let blue = sb.build();
        let merged = red.merge(&blue, |r, b| b.map(|b| b + r).unwrap_or(*r));

        let mut merged_iter = merged.iter();
        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(0, 2));
        assert_eq!(*val, 3);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(2, 4));
        assert_eq!(*val, 5);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(4, 6));
        assert_eq!(*val, 1);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(6, 8));
        assert_eq!(*val, 9);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(8, 9));
        assert_eq!(*val, 1);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(9, 10));
        assert_eq!(*val, 16);

        assert!(merged_iter.next().is_none());
    }

    #[test]
    fn test_merge_2() {
        // 1 1 1   4 4
        //   2 2 2 2     8 9
        let mut sb = SpansBuilder::new(9);
        sb.add_span(Interval::new(0, 3), 1);
        sb.add_span(Interval::new(4, 6), 4);
        let blue = sb.build();

        let mut sb = SpansBuilder::new(9);
        sb.add_span(Interval::new(1, 5), 2);
        sb.add_span(Interval::new(7, 8), 8);
        sb.add_span(Interval::new(8, 9), 9);
        let red = sb.build();

        let merged = red.merge(&blue, |r, b| b.map(|b| b + r).unwrap_or(*r));

        let mut merged_iter = merged.iter();
        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(0, 1));
        assert_eq!(*val, 1);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(1, 3));
        assert_eq!(*val, 3);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(3, 4));
        assert_eq!(*val, 2);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(4, 5));
        assert_eq!(*val, 6);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(5, 6));
        assert_eq!(*val, 4);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(7, 8));
        assert_eq!(*val, 8);

        let (iv, val) = merged_iter.next().unwrap();
        assert_eq!(iv, Interval::new(8, 9));
        assert_eq!(*val, 9);

        assert!(merged_iter.next().is_none());
    }

    #[test]
    fn test_delete_intersecting() {
        let mut sb = SpansBuilder::new(11);
        sb.add_span(Interval::new(1, 2), 2);
        sb.add_span(Interval::new(3, 5), 8);
        sb.add_span(Interval::new(6, 8), 9);
        sb.add_span(Interval::new(9, 10), 1);
        sb.add_span(Interval::new(10, 11), 1);
        let mut spans = sb.build();

        spans.delete_intersecting(Interval::new(4, 7));
        let mut deleted_iter = spans.iter();

        let (iv, val) = deleted_iter.next().unwrap();
        assert_eq!(iv, Interval::new(1, 2));
        assert_eq!(*val, 2);

        let (iv, val) = deleted_iter.next().unwrap();
        assert_eq!(iv, Interval::new(9, 10));
        assert_eq!(*val, 1);
    }

    #[test]
    fn delete_intersecting_big_at_start() {
        let mut sb = SpansBuilder::new(10);
        sb.add_span(0..10, 0);

        let mut spans = sb.build();
        assert_eq!(spans.iter().count(), 1);

        spans.delete_intersecting(Interval::new(1, 2));
        assert_eq!(spans.iter().count(), 0);
    }

    #[test]
    fn delete_intersecting_big_and_small() {
        let mut sb = SpansBuilder::new(10);
        sb.add_span(0..10, 0);
        sb.add_span(3..10, 1);

        let mut spans = sb.build();
        assert_eq!(spans.iter().count(), 2);

        spans.delete_intersecting(Interval::new(1, 2));
        assert_eq!(spans.iter().count(), 1);
    }

    #[test]
    fn delete_intersecting_empty() {
        let mut sb = SpansBuilder::new(10);
        sb.add_span(0..3, 0);
        sb.add_span(9..10, 1);

        eprintln!("--");
        let mut spans = sb.build();
        assert_eq!(spans.iter().count(), 2);

        spans.delete_intersecting(Interval::new(5, 7));
        assert_eq!(spans.iter().count(), 2);
    }
}