1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use std::io;
use std::io::{Write, Read};
use std::borrow::Borrow;
use std::error;
use std::result;
use std::string;
use std::fmt::{self,Display,Formatter};
use byteorder::{self, BigEndian, WriteBytesExt, ReadBytesExt};

/// A wrapper around `std::result::Result` where errors are all `xdr_codec::Error`.
pub type Result<T> = result::Result<T, Error>;

/// XDR errors
///
/// This simply amalgamates the various errors which can arise.
#[derive(Debug)]
pub enum Error {
    /// Byte order packing problem - generally a premature EOF.
    Byteorder(byteorder::Error),
    /// An underlying IO error.
    IOError(io::Error),
    /// An improperly encoded String.
    InvalidUtf8(string::FromUtf8Error),
    /// Encoding discriminated union with a bad (default) case.
    InvalidCase,
    /// Generic error.
    Generic(String),
}

impl Error {
    pub fn invalidcase() -> Error {
        Error::InvalidCase
    }
    pub fn badutf8(err: string::FromUtf8Error) -> Error {
        Error::InvalidUtf8(err)
    }
    pub fn byteorder(berr: byteorder::Error) -> Error {
        match berr {
            byteorder::Error::Io(ioe) => Error::IOError(ioe),
            _ => Error::Byteorder(berr),
        }
    }
}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Self { Error::IOError(err) }
}

impl<'a> From<&'a str> for Error {
    fn from(err: &'a str) -> Self { Error::Generic(String::from(err)) }
}

impl From<string::FromUtf8Error> for Error {
    fn from(err: string::FromUtf8Error) -> Self { Error::InvalidUtf8(err) }
}

impl From<byteorder::Error> for Error {
    fn from(err: byteorder::Error) -> Self {
        match err {
            byteorder::Error::Io(ioe) => Error::IOError(ioe),
            _ => Error::Byteorder(err),
        }
    }
}

unsafe impl Send for Error {}
unsafe impl Sync for Error {}

impl error::Error for Error {
    fn description(&self) -> &str {
        match self {
            &Error::Byteorder(ref be) => be.description(),
            &Error::IOError(ref ioe) => ioe.description(),
            &Error::InvalidUtf8(ref se) => se.description(),
            &Error::Generic(ref s) => s,
            &Error::InvalidCase => "invalid switch case",
        }
    }

    fn cause(&self) -> Option<&error::Error> {
        match self {
            &Error::Byteorder(ref be) => Some(be),
            &Error::IOError(ref ioe) => Some(ioe),
            &Error::InvalidUtf8(ref se) => Some(se),
            _ => None
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut Formatter) -> result::Result<(), fmt::Error> {
        use std::error::Error;
        write!(fmt, "{}", self.description())
    }
}

// return padding needed
#[inline]
fn padding(sz: usize) -> usize {
    (4 - (sz % 4)) % 4
}

/// Serialization (packing) helper.
///
/// Helper to serialize any type implementing `Pack` into an implementation of `std::io::Write`.
pub fn pack<Out: Write, T: Pack<Out>>(val: &T, out: &mut Out) -> Result<()> {
    val.pack(out).map(|_| ())
}

/// Basic packing trait.
///
/// This trait is used to implement XDR packing any Rust type into a
/// `Write` stream. It returns the number of bytes the encoding took.
///
/// This crate provides a number of implementations for all the basic
/// XDR types, and generated code will generally compose them to pack
/// structures, unions, etc.
///
/// Streams generated by `Pack` can be consumed by `Unpack`.
pub trait Pack<Out: Write> {
    fn pack(&self, out: &mut Out) -> Result<usize>;
}

impl<Out: Write> Pack<Out> for u8 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_u8(*self).map_err(Error::from).map(|_| 1)
    }
}

impl<Out: Write> Pack<Out> for u32 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_u32::<BigEndian>(*self).map_err(Error::from).map(|_| 4)
    }

}

impl<Out: Write> Pack<Out> for i32 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_i32::<BigEndian>(*self).map_err(Error::from).map(|_| 4)
    }
}

impl<Out: Write> Pack<Out> for u64 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_u64::<BigEndian>(*self).map_err(Error::from).map(|_| 8)
    }
}

impl<Out: Write> Pack<Out> for i64 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_i64::<BigEndian>(*self).map_err(Error::from).map(|_| 8)
    }
}

impl<Out: Write> Pack<Out> for f32 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_f32::<BigEndian>(*self).map_err(Error::from).map(|_| 4)
    }
}

impl<Out: Write> Pack<Out> for f64 {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        out.write_f64::<BigEndian>(*self).map_err(Error::from).map(|_| 8)
    }
}

impl<Out: Write> Pack<Out> for bool {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        (*self as u32).pack(out)
    }
}

impl<Out: Write> Pack<Out> for () {
    #[inline]
    fn pack(&self, _out: &mut Out) -> Result<usize> {
        Ok(0)
    }
}

impl<Out: Write> Pack<Out> for usize {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        (*self as u32).pack(out)
    }
}

impl<Out: Write, T: Pack<Out>> Pack<Out> for [T] {
    fn pack(&self, out: &mut Out) -> Result<usize> {
        let len = self.len();
        
        let mut sz = try!(len.pack(out));
        for it in self {
            sz += try!(it.pack(out))
        }
        for _ in 0..padding(sz) {
            sz += try!(0u8.pack(out));
        }
        Ok(sz)
    }
}

impl<Out: Write, T: Pack<Out>> Pack<Out> for Vec<T> {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        (&self[..]).pack(out)
    }
}

impl<Out: Write> Pack<Out> for String {
    #[inline]
    fn pack(&self, out: &mut Out) -> Result<usize> {
        self.as_bytes().pack(out)
    }
}

impl<Out: Write, T: Pack<Out>> Pack<Out> for Option<T> {
    fn pack(&self, out: &mut Out) -> Result<usize> {
        match self {
            &None => false.pack(out),
            &Some(ref v) => {
                let sz = try!(true.pack(out)) + try!(v.pack(out));
                Ok(sz)
            }
        }
    }
}

impl<Out: Write, T: Pack<Out>> Pack<Out> for Box<T> {
    fn pack(&self, out: &mut Out) -> Result<usize> {
        let t: &T = self.borrow();
        t.pack(out)
    }
}

/// Deserialization (unpacking) helper function
///
/// This function will read encoded bytes from `input` (a `Read`
/// implementation) and return a fully constructed type (or an
/// error). This relies on type inference to determine which type is
/// to be unpacked, so its up to the calling envionment to clarify
/// this. (Generally it falls out quite naturally.)
pub fn unpack<In: Read, T: Unpack<In>>(input: &mut In) -> Result<T> {
    T::unpack(input).map(|(v, _)| v)
}

/// Basic unpacking trait
///
/// This trait is used to unpack a type from an XDR encoded byte
/// stream (encoded with `Pack`).  It returns the decoded instance and
/// the number of bytes consumed from the input.
///
/// This crate provides implementations for all the basic XDR types,
/// as well as for arrays.
pub trait Unpack<In: Read>: Sized {
    fn unpack(input: &mut In) -> Result<(Self, usize)>;
}

impl<In: Read> Unpack<In> for u8 {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_u8().map_err(Error::from).map(|v| (v, 1))
    }
}

impl<In: Read> Unpack<In> for u32 {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_u32::<BigEndian>().map_err(Error::from).map(|v| (v, 4))
    }
}

impl<In: Read> Unpack<In> for i32 {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_i32::<BigEndian>().map_err(Error::from).map(|v| (v, 4))
    }
}

impl<In: Read> Unpack<In> for u64 {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_u64::<BigEndian>().map_err(Error::from).map(|v| (v, 8))
    }
}

impl<In: Read> Unpack<In> for i64 {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_i64::<BigEndian>().map_err(Error::from).map(|v| (v, 8))
    }
}

impl<In: Read> Unpack<In> for f32 {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_f32::<BigEndian>().map_err(Error::from).map(|v| (v, 4))
    }
}

impl<In: Read> Unpack<In> for f64 {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        input.read_f64::<BigEndian>().map_err(Error::from).map(|v| (v, 8))
    }
}

impl<In: Read> Unpack<In> for bool {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        u32::unpack(input).map(|(v, sz)| (v != 0, sz))
    }
}

impl<In: Read> Unpack<In> for () {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        Ok(((), 0))
    }
}

impl<In: Read> Unpack<In> for usize {
    #[inline]
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        u32::unpack(input).map(|(v, sz)| (v as usize, sz))
    }
}

impl<In: Read, T: Unpack<In>> Unpack<In> for Vec<T> {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        let (elems, mut sz) = try!(Unpack::unpack(input));
        let mut out = Vec::with_capacity(elems);
        
        for _ in 0..elems {
            let (e, esz) = try!(Unpack::unpack(input));
            out.push(e);
            sz += esz;
        }
        for _ in 0..padding(sz) {
            let (_, psz): (u8, _) = try!(Unpack::unpack(input));
            sz += psz;
        }

        Ok((out, sz))
    }
}

impl<In: Read> Unpack<In> for String {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        let (v, sz) = try!(Unpack::unpack(input));
        String::from_utf8(v).map_err(Error::from).map(|s| (s, sz))
    }    
}

impl<In: Read, T: Unpack<In>> Unpack<In> for Option<T> {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        let (have, mut sz) = try!(Unpack::unpack(input));
        let ret = if have {
            let (v, osz) = try!(Unpack::unpack(input));
            sz += osz;
            Some(v)
        } else {
            None
        };
        Ok((ret, sz))
    }
}

impl<In: Read, T: Unpack<In>> Unpack<In> for Box<T> {
    fn unpack(input: &mut In) -> Result<(Self, usize)> {
        let (b, sz) = try!(Unpack::unpack(input));
        Ok((Box::new(b), sz))
    }
}