1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
//! This is a platform agnostic Rust driver for the TCA954xA and
//! PCA954xA I2C switches/multiplexers, based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable one or multiple I2C channels. See [`select_channels()`].
//! - Communicate with the slaves connected to the enabled channels transparently.
//! - Split the device into slave (virtual) I2C devices (one per channel). See: [`split()`].
//!
//! [`select_channels()`]: struct.Xca9548a.html#method.select_channels
//! [`split()`]: struct.Xca9548a.html#method.split
//!
//! ## The devices
//!
//! The TCA954xA and PCA954x devices have two to eight bidirectional translating switches
//! that can be controlled through the I2C bus. The SCL/SDA upstream pair fans out
//! to eight downstream pairs, or channels.
//! Any individual SCn/SDn channel or combination of channels can be selected,
//! determined by the contents of the programmable control register.
//! These downstream channels can be used to resolve I2C slave address conflicts.
//! For example, if  eight identical digital temperature sensors are needed in the
//! application, one sensor can be connected at each channel: 0-N.
//!
//! The TCA9545/3A and PCA9545/3A devices have an assosciated interrupt pin `INT` for each channel
//! which can be polled to check which channels have pending interrupts.
//! (Tip: Can also be used as general inputs)
//!
//! ### Datasheets
//! - [TCA9548A](http://www.ti.com/lit/ds/symlink/tca9548a.pdf)
//! - [PCA9548A](http://www.ti.com/lit/ds/symlink/pca9548a.pdf)
//! - [TCA9545A](http://www.ti.com/lit/ds/symlink/tca9545a.pdf)
//! - [PCA9545A](http://www.ti.com/lit/ds/symlink/pca9545a.pdf)
//! - [TCA9543A](http://www.ti.com/lit/ds/symlink/tca9543a.pdf)
//! - [PCA9543A](http://www.ti.com/lit/ds/symlink/pca9543a.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the device.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Instantiating with the default address
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut i2c_switch = Xca9548a::new(dev, address);
//! ```
//!
//! ### Providing an alternative address
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let (a2, a1, a0) = (false, false, true);
//! let address = SlaveAddr::Alternative(a2, a1, a0);
//! let mut i2c_switch = Xca9548a::new(dev, address);
//! ```
//!
//! ### Selecting channel 0 (SD0/SC0 pins)
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut i2c_switch = Xca9548a::new(dev, address);
//! i2c_switch.select_channels(0b0000_0001).unwrap();
//! ```
//! ### Reading and writing to device connected to channel 0 (SD0/SC0 pins)
//!
//! ```no_run
//! use embedded_hal::blocking::i2c::{ Read, Write };
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut i2c_switch = Xca9548a::new(dev, address);
//! i2c_switch.select_channels(0b0000_0001).unwrap();
//!
//! let slave_address = 0b010_0000; // example slave address
//! let data_for_slave = [0b0101_0101, 0b1010_1010]; // some data to be sent
//!
//! // Read some data from a slave connected to channel 0 using the
//! // I2C switch just as a normal I2C device
//! let mut read_data = [0; 2];
//! i2c_switch.read(slave_address, &mut read_data).unwrap();
//!
//! // Write some data to the slave
//! i2c_switch.write(slave_address, &data_for_slave).unwrap();
//! ```
//!
//! ### Splitting into individual I2C devices and passing them into drivers
//!
//! Drivers usually take ownership of the I2C device.
//! It does not matter if the slaves have the same address.
//! Switching will be done automatically as necessary.
//!
//! ```no_run
//! use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! /// Some driver defined in a different crate.
//! /// Defined here for completeness.
//! struct Driver<I2C> {
//!     i2c: I2C,
//! }
//!
//! impl<I2C, E> Driver<I2C>
//! where I2C: Write<Error = E> + Read<Error = E> + WriteRead<Error = E> {
//!     pub fn new(i2c: I2C) -> Self {
//!         Driver { i2c }
//!     }
//! }
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let i2c_switch = Xca9548a::new(dev, address);
//! let parts = i2c_switch.split();
//!
//! let my_driver = Driver::new(parts.i2c0);
//! let my_other_driver = Driver::new(parts.i2c1);
//! ```
//!
//! ### Splitting into individual I2C devices
//!
//! It does not matter if the slaves have the same address.
//! Switching will be done automatically as necessary.
//!
//! ```no_run
//! use embedded_hal::blocking::i2c::{ Read, Write };
//! use linux_embedded_hal::I2cdev;
//! use xca9548a::{Xca9548a, SlaveAddr};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let i2c_switch = Xca9548a::new(dev, address);
//! let mut parts = i2c_switch.split();
//!
//! let slave_address = 0x20;
//! let data_for_slave = [0xAB, 0xCD];
//!
//! // Write some data to the slave using normal I2C interface
//! parts.i2c0.write(slave_address, &data_for_slave).unwrap();
//!
//! // Read some data from a slave connected to channel 1
//! let mut read_data = [0; 2];
//! parts.i2c1.read(slave_address, &mut read_data).unwrap();
//! ```
//!

#![doc(html_root_url = "https://docs.rs/xca9548a/0.2.1")]
#![deny(unsafe_code)]
#![deny(missing_docs)]
#![no_std]

use core::cell;
use embedded_hal::blocking::i2c;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
    /// Could not acquire device. Maybe it is already acquired.
    CouldNotAcquireDevice,
}

/// Possible slave addresses
#[derive(Debug, Clone)]
pub enum SlaveAddr {
    /// Default slave address
    Default,
    /// Alternative slave address providing bit values for A2, A1 and A0
    /// Note: Some devices does not have all Ax pins, these should be set to false.
    Alternative(bool, bool, bool),
}

impl Default for SlaveAddr {
    /// Default slave address
    fn default() -> Self {
        SlaveAddr::Default
    }
}

impl SlaveAddr {
    fn addr(self, default: u8) -> u8 {
        match self {
            SlaveAddr::Default => default,
            SlaveAddr::Alternative(a2, a1, a0) => {
                default | ((a2 as u8) << 2) | ((a1 as u8) << 1) | a0 as u8
            }
        }
    }
}
const DEVICE_BASE_ADDRESS: u8 = 0b111_0000;

#[doc(hidden)]
#[derive(Debug, Default)]
pub struct Xca954xaData<I2C> {
    /// The concrete I²C device implementation.
    pub(crate) i2c: I2C,
    /// The I²C device address.
    pub(crate) address: u8,
    pub(crate) selected_channel_mask: u8,
}

impl<I2C, E> SelectChannels for Xca954xaData<I2C>
where
    I2C: i2c::Write<Error = E>,
{
    type Error = Error<E>;
    fn select_channels(&mut self, channels: u8) -> Result<(), Self::Error> {
        self.i2c
            .write(self.address, &[channels])
            .map_err(Error::I2C)?;
        self.selected_channel_mask = channels;
        Ok(())
    }
}

#[doc(hidden)]
pub trait DoOnAcquired<I2C>: private::Sealed {
    fn do_on_acquired<R, E>(
        &self,
        f: impl FnOnce(cell::RefMut<Xca954xaData<I2C>>) -> Result<R, Error<E>>,
    ) -> Result<R, Error<E>>;
}

#[doc(hidden)]
pub trait SelectChannels: private::Sealed {
    type Error;
    fn select_channels(&mut self, mask: u8) -> Result<(), Self::Error>;
}

/// Device driver for T/PCA9548A
#[derive(Debug, Default)]
pub struct Xca9548a<I2C> {
    pub(crate) data: cell::RefCell<Xca954xaData<I2C>>,
}

/// Device driver for T/PCA9543A
#[derive(Debug, Default)]
pub struct Xca9543a<I2C> {
    pub(crate) data: cell::RefCell<Xca954xaData<I2C>>,
}

/// Device driver for T/PCA9545A
pub struct Xca9545a<I2C> {
    pub(crate) data: cell::RefCell<Xca954xaData<I2C>>,
}

macro_rules! i2c_traits {
    ( $name:ident ) => {
        impl<I2C> DoOnAcquired<I2C> for $name<I2C> {
            fn do_on_acquired<R, E>(
                &self,
                f: impl FnOnce(cell::RefMut<Xca954xaData<I2C>>) -> Result<R, Error<E>>,
            ) -> Result<R, Error<E>> {
                let dev = self
                    .data
                    .try_borrow_mut()
                    .map_err(|_| Error::CouldNotAcquireDevice)?;
                f(dev)
            }
        }

        impl<I2C, E> i2c::Write for $name<I2C>
        where
            I2C: i2c::Write<Error = E>,
        {
            type Error = Error<E>;

            fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
                self.do_on_acquired(|mut dev| dev.i2c.write(address, bytes).map_err(Error::I2C))
            }
        }

        impl<I2C, E> i2c::Read for $name<I2C>
        where
            I2C: i2c::Read<Error = E>,
        {
            type Error = Error<E>;

            fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
                self.do_on_acquired(|mut dev| dev.i2c.read(address, buffer).map_err(Error::I2C))
            }
        }

        impl<I2C, E> i2c::WriteRead for $name<I2C>
        where
            I2C: i2c::WriteRead<Error = E>,
        {
            type Error = Error<E>;

            fn write_read(
                &mut self,
                address: u8,
                bytes: &[u8],
                buffer: &mut [u8],
            ) -> Result<(), Self::Error> {
                self.do_on_acquired(|mut dev| {
                    dev.i2c
                        .write_read(address, bytes, buffer)
                        .map_err(Error::I2C)
                })
            }
        }
    };
}

macro_rules! impl_device {
    ( $name:ident, $parts:ident ) => {
        impl<I2C> $name<I2C> {
            /// Create new instance of the device
            pub fn new(i2c: I2C, address: SlaveAddr) -> Self {
                let data = Xca954xaData {
                    i2c,
                    address: address.addr(DEVICE_BASE_ADDRESS),
                    selected_channel_mask: 0,
                };
                $name {
                    data: cell::RefCell::new(data),
                }
            }

            /// Destroy driver instance, return I²C bus instance.
            pub fn destroy(self) -> I2C {
                self.data.into_inner().i2c
            }

            /// Split device into individual I2C devices
            ///
            /// It is not possible to know the compatibilities between channels
            /// so when talking to a split I2C device, only its channel
            /// will be selected.
            pub fn split<'a>(&'a self) -> $parts<'a, $name<I2C>, I2C> {
                $parts::new(&self)
            }
        }
    };
    ( $name:ident, $parts:ident, no_interrupts ) => {
        impl_device!($name, $parts);

        impl<I2C, E> $name<I2C>
        where
            I2C: i2c::Read<Error = E>,
        {
            /// Get status of channels.
            ///
            /// Each bit corresponds to a channel.
            /// Bit 0 corresponds to channel 0 and so on up to bit 7 which
            /// corresponds to channel 7.
            /// A `0` means the channel is disabled and a `1` that the channel is enabled.
            pub fn get_channel_status(&mut self) -> Result<u8, Error<E>> {
                let mut data = [0];
                self.do_on_acquired(|mut dev| {
                    let address = dev.address;
                    dev.i2c
                        .read(address, &mut data)
                        .map_err(Error::I2C)
                        .and(Ok(data[0]))
                })
            }
        }

        impl<I2C, E> $name<I2C>
        where
            I2C: i2c::Write<Error = E>,
        {
            /// Select which channels are enabled.
            ///
            /// Each bit corresponds to a channel.
            /// Bit 0 corresponds to channel 0 and so on up to bit 7 which
            /// corresponds to channel 7.
            /// A `0` disables the channel and a `1` enables it.
            /// Several channels can be enabled at the same time
            pub fn select_channels(&mut self, channels: u8) -> Result<(), Error<E>> {
                self.do_on_acquired(|mut dev| dev.select_channels(channels))
            }
        }
    };
    ( $name:ident, $parts:ident, $mask:expr, interrupts ) => {
        impl_device!($name, $parts);

        impl<I2C, E> $name<I2C>
        where
            I2C: i2c::Read<Error = E>,
        {
            /// Get status of channels.
            ///
            /// Each bit corresponds to a channel.
            /// Bit 0 corresponds to channel 0, bit 1 to channel 1 and so on.
            /// A `0` means the channel is disabled and a `1` that the channel is enabled.
            pub fn get_channel_status(&mut self) -> Result<u8, Error<E>> {
                let mut data = [0];
                self.do_on_acquired(|mut dev| {
                    let address = dev.address;
                    dev.i2c
                        .read(address, &mut data)
                        .map_err(Error::I2C)
                        .and(Ok(data[0] & $mask))
                })
            }

            /// Get status of channel interrupts.
            ///
            /// Each bit corresponds to a channel.
            /// Bit 0 corresponds to channel 0, bit 1 to channel 1 and so on.
            /// A `1` means the channel's interrupt is high and a `0` that the channel's interrupt is low.
            /// Note: I2C interrupts are usually active LOW!
            pub fn get_interrupt_status(&mut self) -> Result<u8, Error<E>> {
                let mut data = [0];
                self.do_on_acquired(|mut dev| {
                    let address = dev.address;
                    dev.i2c
                        .read(address, &mut data)
                        .map_err(Error::I2C)
                        .and(Ok((data[0] >> 4) & $mask))
                })
            }
        }

        impl<I2C, E> $name<I2C>
        where
            I2C: i2c::Write<Error = E>,
        {
            /// Select which channels are enabled.
            ///
            /// Each bit corresponds to a channel.
            /// Bit 0 corresponds to channel 0, bit 1 to channel 1 and so on.
            /// A `0` disables the channel and a `1` enables it.
            /// Several channels can be enabled at the same time.
            ///
            /// Channels/bits that does not exist for the specific device are ignored.
            pub fn select_channels(&mut self, channels: u8) -> Result<(), Error<E>> {
                self.do_on_acquired(|mut dev| dev.select_channels(channels & $mask))
            }
        }
    };
}

impl_device!(Xca9548a, Parts, no_interrupts);
i2c_traits!(Xca9548a);

impl_device!(Xca9543a, Parts2, 0x03, interrupts);
i2c_traits!(Xca9543a);

impl_device!(Xca9545a, Parts4, 0x0f, interrupts);
i2c_traits!(Xca9545a);

mod parts;
pub use crate::parts::{I2cSlave, Parts, Parts2, Parts4};

mod private {
    use super::*;

    pub trait Sealed {}
    impl<I2C> Sealed for Xca954xaData<I2C> {}
    impl<I2C> Sealed for Xca9548a<I2C> {}
    impl<I2C> Sealed for Xca9543a<I2C> {}
    impl<I2C> Sealed for Xca9545a<I2C> {}
    impl<'a, DEV, I2C> Sealed for Parts<'a, DEV, I2C> {}
    impl<'a, DEV, I2C> Sealed for Parts2<'a, DEV, I2C> {}
    impl<'a, DEV, I2C> Sealed for Parts4<'a, DEV, I2C> {}
    impl<'a, DEV, I2C> Sealed for I2cSlave<'a, DEV, I2C> {}
}

#[cfg(test)]
mod tests {
    use super::DEVICE_BASE_ADDRESS as BASE_ADDR;
    use super::*;

    #[test]
    fn can_get_default_address() {
        let addr = SlaveAddr::default();
        assert_eq!(BASE_ADDR, addr.addr(BASE_ADDR));
    }

    #[test]
    fn can_generate_alternative_addresses() {
        assert_eq!(
            0b111_0000,
            SlaveAddr::Alternative(false, false, false).addr(BASE_ADDR)
        );
        assert_eq!(
            0b111_0001,
            SlaveAddr::Alternative(false, false, true).addr(BASE_ADDR)
        );
        assert_eq!(
            0b111_0010,
            SlaveAddr::Alternative(false, true, false).addr(BASE_ADDR)
        );
        assert_eq!(
            0b111_0100,
            SlaveAddr::Alternative(true, false, false).addr(BASE_ADDR)
        );
        assert_eq!(
            0b111_0111,
            SlaveAddr::Alternative(true, true, true).addr(BASE_ADDR)
        );
    }
}