1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Types for the Global Descriptor Table and segment selectors.

use crate::structures::tss::TaskStateSegment;
use crate::PrivilegeLevel;
use bit_field::BitField;
use bitflags::bitflags;
use core::fmt;

/// Specifies which element to load into a segment from
/// descriptor tables (i.e., is a index to LDT or GDT table
/// with some additional flags).
///
/// See Intel 3a, Section 3.4.2 "Segment Selectors"
#[derive(Clone, Copy, PartialEq, Eq)]
#[repr(transparent)]
pub struct SegmentSelector(pub u16);

impl SegmentSelector {
    /// Creates a new SegmentSelector
    ///
    /// # Arguments
    ///  * `index`: index in GDT or LDT array (not the offset)
    ///  * `rpl`: the requested privilege level
    pub const fn new(index: u16, rpl: PrivilegeLevel) -> SegmentSelector {
        SegmentSelector(index << 3 | (rpl as u16))
    }

    /// Returns the GDT index.
    pub fn index(&self) -> u16 {
        self.0 >> 3
    }

    /// Returns the requested privilege level.
    pub fn rpl(&self) -> PrivilegeLevel {
        PrivilegeLevel::from_u16(self.0.get_bits(0..2))
    }
}

impl fmt::Debug for SegmentSelector {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut s = f.debug_struct("SegmentSelector");
        s.field("index", &self.index());
        s.field("rpl", &self.rpl());
        s.finish()
    }
}

/// A 64-bit mode global descriptor table (GDT).
///
/// In 64-bit mode, segmentation is not supported. The GDT is used nonetheless, for example for
/// switching between user and kernel mode or for loading a TSS.
///
/// The GDT has a fixed size of 8 entries, trying to add more entries will panic.
///
/// You do **not** need to add a null segment descriptor yourself - this is already done
/// internally.
///
/// Data segment registers in ring 0 can be loaded with the null segment selector. When running in
/// ring 3, the `ss` register must point to a valid data segment which can be obtained through the
/// [`Descriptor::user_data_segment()`](Descriptor::user_data_segment) function. Code segments must
/// be valid and non-null at all times and can be obtained through the
/// [`Descriptor::kernel_code_segment()`](Descriptor::kernel_code_segment) and
/// [`Descriptor::user_code_segment()`](Descriptor::user_code_segment) in rings 0 and 3
/// respectively.
///
/// For more info, see:
/// [x86 Instruction Reference for `mov`](https://www.felixcloutier.com/x86/mov#64-bit-mode-exceptions),
/// [Intel Manual](https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf),
/// [AMD Manual](https://www.amd.com/system/files/TechDocs/24593.pdf)
///
/// # Example
/// ```
/// use x86_64::structures::gdt::{GlobalDescriptorTable, Descriptor};
///
/// let mut gdt = GlobalDescriptorTable::new();
/// gdt.add_entry(Descriptor::kernel_code_segment());
/// gdt.add_entry(Descriptor::user_code_segment());
/// gdt.add_entry(Descriptor::user_data_segment());
///
/// // Add entry for TSS, call gdt.load() then update segment registers
/// ```

#[derive(Debug, Clone)]
pub struct GlobalDescriptorTable {
    table: [u64; 8],
    next_free: usize,
}

impl GlobalDescriptorTable {
    /// Creates an empty GDT.
    pub fn new() -> GlobalDescriptorTable {
        GlobalDescriptorTable {
            table: [0; 8],
            next_free: 1,
        }
    }

    /// Adds the given segment descriptor to the GDT, returning the segment selector.
    ///
    /// Panics if the GDT has no free entries left.
    pub fn add_entry(&mut self, entry: Descriptor) -> SegmentSelector {
        let index = match entry {
            Descriptor::UserSegment(value) => self.push(value),
            Descriptor::SystemSegment(value_low, value_high) => {
                let index = self.push(value_low);
                self.push(value_high);
                index
            }
        };
        SegmentSelector::new(index as u16, PrivilegeLevel::Ring0)
    }

    /// Loads the GDT in the CPU using the `lgdt` instruction. This does **not** alter any of the
    /// segment registers; you **must** (re)load them yourself using [the appropriate
    /// functions](crate::instructions::segmentation):
    /// [load_ss](crate::instructions::segmentation::load_ss),
    /// [set_cs](crate::instructions::segmentation::set_cs).
    #[cfg(target_arch = "x86_64")]
    pub fn load(&'static self) {
        use crate::instructions::tables::{lgdt, DescriptorTablePointer};
        use core::mem::size_of;

        let ptr = DescriptorTablePointer {
            base: self.table.as_ptr() as u64,
            limit: (self.table.len() * size_of::<u64>() - 1) as u16,
        };

        unsafe { lgdt(&ptr) };
    }

    fn push(&mut self, value: u64) -> usize {
        if self.next_free < self.table.len() {
            let index = self.next_free;
            self.table[index] = value;
            self.next_free += 1;
            index
        } else {
            panic!("GDT full");
        }
    }
}

/// A 64-bit mode segment descriptor.
///
/// Segmentation is no longer supported in 64-bit mode, so most of the descriptor
/// contents are ignored.
#[derive(Debug, Clone)]
pub enum Descriptor {
    /// Descriptor for a code or data segment.
    ///
    /// Since segmentation is no longer supported in 64-bit mode, almost all of
    /// code and data descriptors is ignored. Only some flags are still used.
    UserSegment(u64),
    /// A system segment descriptor such as a LDT or TSS descriptor.
    SystemSegment(u64, u64),
}

bitflags! {
    /// Flags for a GDT descriptor. Not all flags are valid for all descriptor types.
    pub struct DescriptorFlags: u64 {
        /// For data segments, this flag sets the segment as writable. Ignored for code segments.
        const WRITABLE          = 1 << 41;
        /// Marks a code segment as “conforming”. This influences the privilege checks that
        /// occur on control transfers.
        const CONFORMING        = 1 << 42;
        /// This flag must be set for code segments.
        const EXECUTABLE        = 1 << 43;
        /// This flag must be set for user segments (in contrast to system segments).
        const USER_SEGMENT      = 1 << 44;
        /// Must be set for any segment, causes a segment not present exception if not set.
        const PRESENT           = 1 << 47;
        /// Must be set for long mode code segments.
        const LONG_MODE         = 1 << 53;

        /// The DPL for this descriptor is Ring 3
        const DPL_RING_3        = 3 << 45;
    }
}

impl Descriptor {
    /// Creates a segment descriptor for a long mode kernel code segment.
    pub fn kernel_code_segment() -> Descriptor {
        use self::DescriptorFlags as Flags;

        let flags = Flags::USER_SEGMENT | Flags::PRESENT | Flags::EXECUTABLE | Flags::LONG_MODE;
        Descriptor::UserSegment(flags.bits())
    }

    /// Creates a segment descriptor for a long mode ring 3 data segment.
    pub fn user_data_segment() -> Descriptor {
        use self::DescriptorFlags as Flags;

        let flags = Flags::USER_SEGMENT | Flags::PRESENT | Flags::WRITABLE | Flags::DPL_RING_3;
        Descriptor::UserSegment(flags.bits())
    }

    /// Creates a segment descriptor for a long mode ring 3 code segment.
    pub fn user_code_segment() -> Descriptor {
        use self::DescriptorFlags as Flags;

        let flags = Flags::USER_SEGMENT
            | Flags::PRESENT
            | Flags::EXECUTABLE
            | Flags::LONG_MODE
            | Flags::DPL_RING_3;
        Descriptor::UserSegment(flags.bits())
    }

    /// Creates a TSS system descriptor for the given TSS.
    pub fn tss_segment(tss: &'static TaskStateSegment) -> Descriptor {
        use self::DescriptorFlags as Flags;
        use core::mem::size_of;

        let ptr = tss as *const _ as u64;

        let mut low = Flags::PRESENT.bits();
        // base
        low.set_bits(16..40, ptr.get_bits(0..24));
        low.set_bits(56..64, ptr.get_bits(24..32));
        // limit (the `-1` in needed since the bound is inclusive)
        low.set_bits(0..16, (size_of::<TaskStateSegment>() - 1) as u64);
        // type (0b1001 = available 64-bit tss)
        low.set_bits(40..44, 0b1001);

        let mut high = 0;
        high.set_bits(0..32, ptr.get_bits(32..64));

        Descriptor::SystemSegment(low, high)
    }
}