1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! Allocator extension traits.
use core::{alloc, mem};
use alloc_traits::{NonZeroLayout, LocalAlloc};
use super::{
    boxed::Box,
    fixed_vec::FixedVec,
    rc::Rc,
    uninit::Uninit,
};

/// Values of for some allocation including the [`Uninit`].
///
/// See [`Uninit`] for a better picture of the potential usage of this result.
///
/// [`Uninit`]: ../uninit/struct.Uninit.html
#[derive(Debug)]
pub struct LeakedAllocation<'a, T: ?Sized=()> {
    /// Uninit pointer to the region with specified layout.
    pub uninit: Uninit<'a, T>,
}

/// Leak allocations into uninit regions.
pub trait LocalAllocLeakExt<'alloc>: LocalAlloc<'alloc> {
    /// Leak an allocation with detailed layout.
    ///
    /// Provides an [`Uninit`] wrapping several aspects of initialization in a safe interface,
    /// bound by the lifetime of the reference to the allocator.
    ///
    /// [`Uninit`]: ../uninit/struct.Uninit.html
    fn alloc_layout(&'alloc self, layout: NonZeroLayout)
        -> Option<LeakedAllocation<'alloc>>
    {
        let alloc = self.alloc(layout)?;
        let uninit = unsafe {
            Uninit::from_memory(alloc.ptr, alloc.layout.size().into())
        };

        Some(LeakedAllocation {
            uninit,
        })
    }

    /// Leak an allocation for a specific type.
    ///
    /// It is not yet initialized but provides a safe interface for that initialization. Note that
    /// the type **can** be a ZST in which case a dangling pointer is substituted for the true
    /// allocation.
    ///
    /// ## Usage
    ///
    /// ```
    /// # use static_alloc::Bump;
    /// # use without_alloc::alloc::LocalAllocLeakExt;
    /// use core::cell::{Ref, RefCell};
    ///
    /// let slab: Bump<[Ref<'static, usize>; 1]> = Bump::uninit();
    /// let data = RefCell::new(0xff);
    ///
    /// // We can place a `Ref` here but we did not yet.
    /// let alloc = slab.alloc_t::<Ref<usize>>().unwrap();
    /// let cell_ref = alloc.uninit.init(data.borrow());
    ///
    /// assert_eq!(**cell_ref, 0xff);
    /// ```
    fn alloc_t<V>(&'alloc self) -> Option<LeakedAllocation<'alloc, V>> {
        match NonZeroLayout::new::<V>() {
            None => Some(LeakedAllocation::zst_fake_alloc()),
            Some(alloc) => {
                let allocation = self.alloc_layout(alloc)?;
                let right_type = allocation.cast().unwrap();
                Some(right_type)
            },
        }
    }

    /// Allocate a [`Box`].
    ///
    /// This will allocate some memory with the correct layout for a [`Box`], then place the
    /// provided value into the allocation by constructing an [`Box`].
    ///
    /// [`Box`]: ../boxed/struct.Box.html
    fn boxed<V>(&'alloc self, val: V) -> Option<Box<'alloc, V>> {
        let alloc = self.alloc_t::<V>()?;
        Some(Box::new(val, alloc.uninit))
    }

    /// Allocate a [`FixedVec`].
    ///
    /// This will allocate some memory with the correct layout for a [`FixedVec`] of the given
    /// capacity (in elements) and wrap it. Returns `None` if it is not possible to allocate the
    /// layout.
    ///
    /// [`FixedVec`]: ../fixed_vec/struct.FixedVec.html
    fn fixed_vec<V>(&'alloc self, capacity: usize) -> Option<FixedVec<'alloc, V>> {
        let size = mem::size_of::<V>().checked_mul(capacity)?;
        let layout = alloc::Layout::from_size_align(size, mem::align_of::<V>()).ok()?;

        let uninit = match NonZeroLayout::from_layout(layout.into()) {
            None => Uninit::empty(),
            Some(layout) => {
                let allocation = self.alloc_layout(layout)?;
                let right_type = allocation.cast_slice().unwrap();
                right_type.uninit
            }
        };

        Some(FixedVec::new(uninit))
    }

    /// Allocate an [`Rc`].
    ///
    /// This will allocate some memory with the correct layout for an [`Rc`], then place the
    /// provided value into the allocation by constructing an [`Rc`].
    ///
    /// [`Rc`]: ../rc/struct.Rc.html
    fn rc<V>(&'alloc self, val: V) -> Option<Rc<'alloc, V>> {
        let layout = Rc::<V>::layout();
        // Unwrap since this is surely never an empty layout, always have counter.
        let layout = NonZeroLayout::from_layout(layout.into()).unwrap();
        let alloc = self.alloc_layout(layout)?;
        Some(Rc::new(val, alloc.uninit))
    }

    /// Allocate a slice of a copyable type.
    ///
    /// This will allocate some memory with the same layout as required by the slice, then copy all
    /// values into the new allocation via a byte copy.
    ///
    /// ```
    /// # use static_alloc::Bump;
    /// # use without_alloc::alloc::LocalAllocLeakExt;
    /// let slab: Bump<[usize; 16]> = Bump::uninit();
    /// let data: &[u8] = b"Hello, World!";
    ///
    /// let slice = slab.copy_slice(data).unwrap();
    /// assert_eq!(data, slice);
    /// ```
    fn copy_slice<T: Copy>(&'alloc self, slice: &[T]) -> Option<&'alloc mut [T]> {
        let layout = alloc::Layout::for_value(slice);
        let uninit = match NonZeroLayout::from_layout(layout.into()) {
            None => Uninit::empty(),
            Some(layout) => {
                let allocation = self.alloc_layout(layout)?;
                let right_type = allocation.cast_slice().unwrap();
                right_type.uninit
            }
        };

        unsafe {
            // SAFETY:
            // * the source is trivially valid for reads as it is a slice
            // * the memory is valid for the same layout as slice, so aligned and large enough
            // * both are aligned, uninit due to allocator requirements
            core::ptr::copy(slice.as_ptr(), uninit.as_begin_ptr(), slice.len());
        }

        Some(unsafe {
            // SAFETY: this is a copy of `slice` which is initialized.
            uninit.into_mut()
        })
    }

    /// Allocate a dynamically sized string.
    ///
    /// This will allocate some memory with the same layout as required by the string, then copy
    /// all characters into the new allocation via a byte copy.
    ///
    /// ```
    /// # use static_alloc::Bump;
    /// # use without_alloc::alloc::LocalAllocLeakExt;
    /// let slab: Bump<[u8; 16]> = Bump::uninit();
    /// let data: &str = "Hello, World!";
    ///
    /// let slice = slab.copy_str(data).unwrap();
    /// assert_eq!(data, slice);
    /// ```
    fn copy_str(&'alloc self, st: &str) -> Option<&'alloc str> {
        let bytes = self.copy_slice(st.as_bytes())?;

        Some(unsafe {
            // SAFETY: this is a copy of `st` which is valid utf-8
            core::str::from_utf8_unchecked(bytes)
        })
    }

    /// Allocate a copy of a generic dynamically sized type.
    ///
    /// This method takes a `ManuallyDrop<T>` wrapper instead of a `T` directly. These types are of
    /// course layout compatible and you may soundly cast one reference type to the other. However
    /// this choice forces acknowledgment that the value _must not_ be dropped by the caller
    /// afterwards and makes this reasonably more safe in case of panics.
    ///
    /// Note further that mutable access is however explicitly _not_ required in contrast to
    /// `ManuallyDrop::take`. Otherwise, the caller would have to ensure that the value is not
    /// aliased and actually mutable. Keeping these guarantees often involves moving the value into
    /// a new stack slot which is obviously not possible for dynamically sized values. This
    /// interfaces promises not to overwrite any byte which does not restrict its functionality.
    ///
    /// # Safety
    ///
    /// This is quite unsafe and relies on the nightly `set_ptr_value` feature. Furthermore this
    /// method does not require that `T` is in fact `Copy` as doing so would not be possible for
    /// dynamically sized values. You must either require this bound on the expose interface or
    /// must ensure the source value behind the pointer is not used further, not dropped and
    /// basically discarded. You should act as if `take` had been called on the supplied value.
    ///
    /// # Example
    ///
    /// ```
    /// # use static_alloc::Bump;
    /// # use without_alloc::alloc::LocalAllocLeakExt;
    /// use core::fmt::Debug;
    /// use core::mem::ManuallyDrop;
    ///
    /// let slab: Bump<[u8; 16]> = Bump::uninit();
    /// let debuggable = ManuallyDrop::new(1usize);
    /// let debug = unsafe {
    ///     slab.copy_dst::<dyn Debug>(&debuggable).unwrap()
    /// };
    /// assert_eq!(format!("{:?}", debug), "1");
    /// ```
    #[cfg(feature = "nightly_set_ptr_value")]
    #[allow(unused_unsafe)]
    unsafe fn copy_dst<T: ?Sized>(&'alloc self, val: &core::mem::ManuallyDrop<T>) -> Option<&'alloc mut T> {
        let layout = alloc::Layout::for_value(val);
        let uninit = match NonZeroLayout::from_layout(layout.into()) {
            None => Uninit::invent_for_zst(),
            Some(layout) => self.alloc_layout(layout)?.uninit,
        };

        unsafe {
            // SAFETY:
            // * the source is valid for reads for its own layout
            // * the memory is valid for the same layout as val, so aligned and large enough
            // * both are aligned, uninit due to allocator requirements
            core::ptr::copy(val as *const _ as *const u8, uninit.as_ptr() as *mut u8, layout.size());
        }

        let ptr = val as *const _ as *mut T;
        let ptr = uninit.as_ptr().with_metadata_of(ptr);
        Some(unsafe {
            // SAFETY: The byte copy above put the value into a valid state. Caller promises that
            // we can logically move the value.
            &mut *ptr
        })
    }
}

impl<'alloc, T> LocalAllocLeakExt<'alloc> for T
    where T: LocalAlloc<'alloc>,
{ }

impl<Zst> LeakedAllocation<'_, Zst> {
    /// Invent a new allocation for a zero-sized type (ZST).
    ///
    /// # Panics
    /// This method panics when the type parameter is not a zero sized type.
    pub fn zst_fake_alloc() -> Self {
        LeakedAllocation {
            uninit: Uninit::invent_for_zst(),
        }
    }
}

impl<'a, T> LeakedAllocation<'a, T> {
    fn cast<U>(self) -> Option<LeakedAllocation<'a, U>> {
        Some(LeakedAllocation {
            uninit: self.uninit.cast().ok()?,
        })
    }

    fn cast_slice<U>(self) -> Option<LeakedAllocation<'a, [U]>> {
        Some(LeakedAllocation {
            uninit: self.uninit.cast_slice().ok()?,
        })
    }
}