1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
//! Reference counter value.
//!
//! See [`Rc`] for more information.
//!
//! [`Rc`]: ./struct.Rc.html
use core::{borrow, cmp, fmt, hash, mem, ops, ptr};
use core::alloc::Layout;
use core::cell::Cell;

use crate::uninit::{Uninit, UninitView};

/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference Counted'.
///
/// The inherent methods are all associated functions. This means you can not call them
/// unexpectedly through deref-coercion the reference itself. Instead, you need to call them as
/// `Rc::try_unwrap(rc)` etc. .
///
/// Compared to the standard library version, this will perform its own allocation. Instead, you
/// can ask [`Bump`] to perform them or manually allocate guided by the necessary [`layout`].
///
/// [`Bump`]: ../slab/struct.Bump.html#method.rc
/// [`layout`]: #method.layout
pub struct Rc<'a, T> {
    /// Shared view on the memory of the box.
    ///
    /// It is important **NOT** to safely expose this to the user. The weak counter maintains the
    /// invariant that the pointed-to memory is no longer aliased when the last Rc to that view has
    /// been dropped.
    inner: UninitView<'a, RcBox<T>>,
}

/// A reference-counting pointer to the allocation of an `Rc`.
///
/// ## TODO
///
/// Evaluate an interface:
/// ```ignore
/// fn reinit(&self, val: T) -> Result<Rc<T>, T>;
/// ```
pub struct Weak<'a, T> {
    /// Shared view on the memory of the box.
    ///
    /// The inner `val` of the box may have been de-initialized already. So we must be very careful
    /// to never create an actual reference to the box.
    inner: UninitView<'a, RcBox<T>>,
}

/// A structured container for the boxed value.
///
/// It's representation is chosen such that it can be cast to `Uninit<T>` and from it given
/// appropriate additional space. All added data is at the end of the allocation, this allows other
/// containers that store the value to reuse the same allocation without shoveling data around.
///
/// That however, is an implementation detail since we could also `memmove` appropriately. And it
/// falls apart as soon as we take extra alignment requirements into account. Hence, we do not
/// expose it generally and give no guarantees outside the basic conversion. Make this
/// incrementally better.
#[repr(C)]
struct RcBox<T> {
    /// Keep this member first!
    ///
    /// Note that `as_mut_ptr` and `into_raw` rely on this.
    val: T,

    /// The number of owners of the value.
    strong: Cell<usize>,

    /// The number of owners of the memory view.
    ///
    /// Note that the strong ownership of the value also counts as a *single* weak ownership. The
    /// last access which drops the value should also decrease the weak count.
    weak: Cell<usize>,
}

impl<'a, T> Rc<'a, T> {
    /// Constructs a new `Rc<T>`.
    ///
    /// See also [`Bump::rc`], which encapsulates the process of allocation and construction in a
    /// single method call.
    ///
    /// ## Panics
    /// This function panics if the memory is not valid for the layout of [`Rc::layout`].
    ///
    /// ## Examples
    ///
    /// ```
    /// use core::convert::TryInto;
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo(u32);
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let layout = Rc::<Foo>::layout().try_into().unwrap();
    /// let memory = slab.alloc_layout(layout).unwrap();
    /// let rc = Rc::new(Foo(0), memory.uninit);
    /// ```
    ///
    /// [`Rc::layout`]: #method.layout
    /// [`Bump::rc`]: ../slab/struct.Bump.html#method.rc
    pub fn new(val: T, memory: Uninit<'a, ()>) -> Self {
        assert!(memory.fits(Self::layout()), "Provided memory must fit the inner layout");
        let mut memory = memory.cast::<RcBox<T>>().unwrap();

        memory.borrow_mut().init(RcBox {
            val,
            strong: Cell::new(1),
            weak: Cell::new(1),
        });

        Rc {
            inner: memory.into(),
        }
    }

    /// Wrap a raw initialized value back into an `Rc`.
    ///
    /// ## Safety
    /// The block must originate from a previous call to [`into_raw`] and only the value must have
    /// been modified. The value must still be valid.
    pub unsafe fn from_raw(init: Uninit<'a, T>) -> Self {
        debug_assert!(init.fits(Self::layout()), "Provided memory must fit the inner layout");
        let inner = init.cast().unwrap();

        Rc {
            inner: inner.into(),
        }
    }

    /// Try to extract the memory.
    ///
    /// This returns `Some` only when this is the last strong *and* weak reference to the value.
    /// The contained value will be preserved and is not dropped. Use `from_raw` to reinitialize a
    /// new `Rc` with the old value and memory.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct HotPotato;
    ///
    /// impl Drop for HotPotato {
    ///     fn drop(&mut self) {
    ///         panic!("dropped!");
    ///     }
    /// }
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let foo = slab.rc(HotPotato).unwrap();
    ///
    /// let raw = Rc::into_raw(foo).ok().unwrap();
    /// // No panic. Value has not been dropped.
    /// ```
    pub fn into_raw(rc: Self) -> Result<Uninit<'a, T>, Self> {
        if !Rc::is_unique(&rc) {
            // Note: implicitely decrements `strong`
            return Err(rc);
        }

        let ptr = rc.inner.as_non_null();
        let len = rc.inner.size();
        mem::forget(rc);
        unsafe {
            // SAFETY: restored the memory we just forgot. We are the only reference to it, so it
            // is fine to restore the original unqiue allocation reference.
            Ok(Uninit::from_memory(ptr.cast(), len).cast().unwrap())
        }
    }

    /// Returns the contained value, if the `Rc` has exactly one strong reference.
    ///
    /// Also returns the managed memory in the form of a `Weak`. This is unusual but the best
    /// choice for potentially recovering it. Returning the memory directly is not possible since
    /// other `Weak<T>` instances may still point to it. If you are not interested in the memory
    /// you can simply drop the `Weak`.
    pub fn try_unwrap(rc: Self) -> Result<(T, Weak<'a, T>), Self> {
        if Rc::strong_count(&rc) != 1 {
            return Err(rc);
        }

        rc.dec_strong();
        let val = unsafe { ptr::read(rc.as_ptr()) };

        let weak = Weak { inner: rc.inner };
        mem::forget(rc);

        Ok((val, weak))
    }

    /// Create a new `Weak` pointer to the value.
    ///
    /// The weak pointer shares ownership over the memory but not over the value itself.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let foo = slab.rc(Foo).unwrap();
    /// let weak = Rc::downgrade(&foo);
    ///
    /// assert_eq!(Rc::weak_count(&foo), 2);
    /// drop(foo);
    ///
    /// assert_eq!(weak.weak_count(), 1);
    /// ```
    pub fn downgrade(rc: &Self) -> Weak<'a, T> {
        rc.inc_weak();
        Weak { inner: rc.inner }
    }
}

impl<T> Rc<'_, T> {
    /// Get the layout for memory passed to [`Rc::new`].
    ///
    /// You should not rely on the value returned here. The two guarantees are: the size of the
    /// layout is at least as large as the input type and it is never empty.
    ///
    /// An `Rc` does not simply point to a lone instance of a type but instead adds some small
    /// metadata (two pointer-sized counters). To keep the implementation details private, this
    /// method allows allocation of properly sized regions without exposing the exact type that
    /// will be stored on the heap.
    ///
    /// ## Examples
    ///
    /// ```
    /// use without_alloc::rc::Rc;
    ///
    /// struct Foo(u32);
    /// struct Empty;
    ///
    /// assert!(Rc::<Foo>::layout().size() >= 4);
    /// assert!(Rc::<Empty>::layout().size() > 0);
    /// ```
    ///
    /// [`Rc::new`]: #method.new
    pub fn layout() -> Layout {
        // FIXME: this should really be `const` but `Layout` does not offer that yet.
        Layout::new::<RcBox<T>>()
    }

    /// Gets the number of weak pointers to the value.
    ///
    /// Note that all `Rc` to the same value count as one weak pointer in total.
    pub fn weak_count(rc: &Self) -> usize {
        rc.inner().weak.get()
    }

    /// Gets the number of strong pointers to the value.
    pub fn strong_count(rc: &Self) -> usize {
        rc.inner().strong.get()
    }

    /// Try to retrieve a mutable reference to the value.
    ///
    /// This method will only succeed if there are no other pointers to the same value, neither
    /// strong ones nor weak ones.
    pub fn get_mut(rc: &mut Self) -> Option<&mut T> {
        if rc.is_unique() {
            Some(unsafe { &mut *rc.as_mut_ptr() })
        } else {
            None
        }
    }

    /// Check if two `Rc`s point to the same data.
    ///
    /// This will never compare the values but simply inspect the inner pointers.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    ///
    /// // Two Rc's pointing to the same data.
    /// let foo = slab.rc(Foo).unwrap();
    /// let foo2 = Rc::clone(&foo);
    ///
    /// // An unrelated allocation.
    /// let not_foo = slab.rc(Foo).unwrap();
    ///
    /// assert!( Rc::ptr_eq(&foo, &foo2));
    /// assert!(!Rc::ptr_eq(&foo, &not_foo));
    /// ```
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.inner.as_ptr() == other.inner.as_ptr()
    }

    /// Get a reference to the inner box.
    ///
    /// Note that we must not mutably touch or reference the inner `T` through the reference by
    /// casting to mutable pointers.
    fn inner(&self) -> &RcBox<T> {
        unsafe {
            self.inner.as_ref()
        }
    }

    fn is_unique(&self) -> bool {
        Rc::strong_count(self) == 1 && Rc::weak_count(self) == 1
    }

    /// Get the mutable pointer to the value.
    ///
    /// This relies on the layout of the inner struct.
    fn as_mut_ptr(&mut self) -> *mut T {
        // `T` is the first member, #[repr(C)] makes this cast well behaved.
        self.inner.as_ptr() as *mut T
    }

    /// Get the pointer to the value.
    ///
    /// This relies on the layout of the inner struct.
    fn as_ptr(&self) -> *const T {
        self.inner.as_ptr() as *const T
    }

    fn inc_strong(&self) {
        let val = Self::strong_count(self) + 1;
        self.inner().strong.set(val);
    }

    fn dec_strong(&self) {
        let val = Self::strong_count(self) - 1;
        self.inner().strong.set(val);
    }

    fn inc_weak(&self) {
        let val = Self::weak_count(self) + 1;
        self.inner().weak.set(val);
    }

    fn dec_weak(&self) {
        let val = Self::weak_count(self) - 1;
        self.inner().weak.set(val);
    }
}

impl<'a, T> Weak<'a, T> {
    /// Try to unwrap the original allocation of the `Rc`.
    ///
    /// This will only work when this is the only pointer to the allocation. That is, there are
    /// neither `Weak` nor `Rc` still pointing at it.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let rc = slab.rc(Foo).unwrap();
    /// let (_, weak) = Rc::try_unwrap(rc).ok().unwrap();
    ///
    /// // This is the only one pointing at the allocation.
    /// let memory = weak.try_unwrap().ok().unwrap();
    /// ```
    pub fn try_unwrap(self) -> Result<Uninit<'a, ()>, Self> {
        if !self.is_unique_to_rc_memory() {
            return Err(self);
        }

        let ptr = self.inner.as_non_null();
        let len = self.inner.size();
        unsafe {
            // SAFETY: restored the memory that an rc has originally provided to the `Weak`. We are
            // the only reference to it, so it is fine to restore the original unqiue allocation
            // reference.
            Ok(Uninit::from_memory(ptr.cast(), len))
        }
    }

    /// Attempt to upgrade to a shared pointer to the value.
    ///
    /// This operation will only succeed if there are still strong pointers to the value, i.e.
    /// `strong_count` is not zero. Then the value has not been dropped yet and its lifetime is
    /// extended.
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// let memory: Bump<[u8; 1024]> = Bump::uninit();
    /// let rc = memory.rc(0usize).unwrap();
    ///
    /// let weak = Rc::downgrade(&rc);
    /// let rc2 = weak.upgrade().unwrap();
    ///
    /// drop(rc);
    /// drop(rc2);
    ///
    /// // No more strong pointers left.
    /// assert!(weak.upgrade().is_none());
    /// ```
    pub fn upgrade(&self) -> Option<Rc<'a, T>> {
        if self.strong_count() == 0 {
            None
        } else { 
            let rc = Rc { inner: self.inner };
            rc.inc_strong();
            Some(rc)
        }
    }
}

impl<T> Weak<'_, T> {
    /// Gets the number of strong pointers pointing at the value.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc, rc::Weak};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let rc = slab.rc(Foo).unwrap();
    /// let (_, weak) = Rc::try_unwrap(rc).ok().unwrap();
    ///
    /// // We just destroyed the only one.
    /// assert_eq!(Weak::strong_count(&weak), 0);
    /// ```
    pub fn strong_count(&self) -> usize {
        self.strong().get()
    }

    /// Gets the number of weak pointers pointing at the value.
    ///
    /// ## Example
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc, rc::Weak};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let rc = slab.rc(Foo).unwrap();
    /// let (_, weak) = Rc::try_unwrap(rc).ok().unwrap();
    ///
    /// // This is the only one pointing at the allocation.
    /// assert_eq!(Weak::weak_count(&weak), 1);
    /// ```
    pub fn weak_count(&self) -> usize {
        self.weak().get()
    }

    fn is_unique_to_rc_memory(&self) -> bool {
        self.strong_count() == 0 && self.weak_count() == 1
    }

    /// Get a reference to the weak counter.
    ///
    /// Avoids potential UB, never creates a reference to the potentially dead `val`.
    fn weak(&self) -> &Cell<usize> {
        unsafe { &(*self.inner.as_ptr()).weak }
    }

    /// Get a reference to the strong counter.
    ///
    /// Avoids potential UB, never creates a reference to the potentially dead `val`.
    fn strong(&self) -> &Cell<usize> {
        unsafe { &(*self.inner.as_ptr()).strong }
    }

    fn inc_weak(&self) {
        let val = Weak::weak_count(self);
        self.weak().set(val + 1);
    }

    fn dec_weak(&self) {
        let val = Weak::weak_count(self);
        self.weak().set(val - 1);
    }
}

impl<T> Drop for Rc<'_, T> {
    /// Drops the `Rc`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count reaches zero then the only other references (if any) are
    /// [`Weak`], so we `drop` the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    ///
    /// let foo  = slab.rc(Foo).unwrap();
    /// let foo2 = Rc::clone(&foo);
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped!"
    /// ```
    fn drop(&mut self) {
        self.dec_strong();
        // weak count doesn't actually do anything.
        if Rc::strong_count(self) == 0 {
            self.dec_weak();

            unsafe {
                ptr::drop_in_place(self.as_mut_ptr())
            }
        }
    }
}

impl<T> ops::Deref for Rc<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.inner().val
    }
}

impl<T> Clone for Rc<'_, T> {
    /// Clone the `Rc`.
    ///
    /// This will increment the strong reference count. Only an Rc pointing to a unique value can
    /// unwrap or point to the value mutably.
    ///
    /// # Examples
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump; 
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    ///
    /// let mut foo  = slab.rc(Foo).unwrap();
    /// assert!(Rc::get_mut(&mut foo).is_some());
    ///
    /// let foo2 = Rc::clone(&foo);
    /// assert!(Rc::get_mut(&mut foo).is_none());
    /// ```
    fn clone(&self) -> Self {
        self.inc_strong();
        Rc {
            inner: self.inner,
        }
    }
}

impl<T> Drop for Weak<'_, T> {
    fn drop(&mut self) {
        self.dec_weak();
        // It doesn't matter what happens to the memory.
    }
}

impl<T> Clone for Weak<'_, T> {
    /// Clone the `Weak`.
    ///
    /// This will increment the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use without_alloc::{alloc::LocalAllocLeakExt, rc::Rc};
    /// use static_alloc::Bump;
    ///
    /// struct Foo;
    ///
    /// let slab: Bump<[u8; 1024]> = Bump::uninit();
    /// let foo = slab.rc(Foo).unwrap();
    ///
    /// let (_, weak) = Rc::try_unwrap(foo).ok().unwrap();
    /// assert_eq!(weak.weak_count(), 1);
    ///
    /// let weak2 = weak.clone();
    /// assert_eq!(weak.weak_count(), 2);
    /// assert_eq!(weak2.weak_count(), 2);
    /// ```
    fn clone(&self) -> Self {
        self.inc_weak();
        Weak {
            inner: self.inner,
        }
    }
}

impl<'a, 'b, T: PartialEq> PartialEq<Rc<'b, T>> for Rc<'a, T> {
    #[inline]
    fn eq(&self, other: &Rc<T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Rc<T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}

impl<T: Eq> Eq for Rc<'_, T> { }

impl<'a, 'b, T: PartialOrd> PartialOrd<Rc<'b, T>> for Rc<'a, T> {
    #[inline]
    fn partial_cmp(&self, other: &Rc<T>) -> Option<cmp::Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Rc<T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Rc<T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Rc<T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Rc<T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}

impl<T: Ord> Ord for Rc<'_, T> {
    #[inline]
    fn cmp(&self, other: &Rc<T>) -> cmp::Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<T: hash::Hash> hash::Hash for Rc<'_, T> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

impl<T: fmt::Display> fmt::Display for Rc<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: fmt::Debug> fmt::Debug for Rc<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T> fmt::Pointer for Rc<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.as_ptr(), f)
    }
}

impl<T> borrow::Borrow<T> for Rc<'_, T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

impl<T> AsRef<T> for Rc<'_, T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[cfg(test)]
mod tests {
    use core::alloc::Layout;
    use core::cell::Cell;

    use super::{RcBox, Rc, Weak};
    use static_alloc::Bump;
    use crate::alloc::LocalAllocLeakExt;

    #[test]
    fn layout_box_compatible() {
        let mut boxed = RcBox {
            val: 0usize,
            strong: Cell::new(1),
            weak: Cell::new(1),
        };

        let box_ptr = &mut boxed as *mut RcBox<usize>;
        let val_ptr = box_ptr as *const usize;
        assert_eq!(unsafe { *val_ptr }, 0);

        unsafe { (*box_ptr).val = 0xdeadbeef };
        assert_eq!(unsafe { *val_ptr }, 0xdeadbeef);
    }

    #[test]
    fn control_through_counters() {
        struct Duck;
        struct NeverDrop;

        impl Drop for NeverDrop {
            fn drop(&mut self) {
                panic!("dropped!");
            }
        }

        let slab: Bump<[u8; 1024]> = Bump::uninit();
        let rc = slab.rc(NeverDrop).unwrap();
        rc.inc_strong();
        drop(rc);

        let mut rc = slab.rc(Duck).unwrap();
        assert_eq!(rc.as_mut_ptr() as *const u8, rc.inner.as_ptr() as *const u8);
        assert_eq!(rc.as_ptr() as *const u8, rc.inner.as_ptr() as *const u8);

        let rc = slab.rc(Duck).unwrap();
        // Forbidden in public, but we do not grab mutable references.
        let inner = rc.inner;
        drop(rc);
        unsafe {
            assert_eq!((*inner.as_ptr()).strong.get(), 0);
            assert_eq!((*inner.as_ptr()).weak.get(), 0);
        }

        let rc = slab.rc(Duck).unwrap();
        let (_, weak) = Rc::try_unwrap(rc).ok().unwrap();
        assert_eq!(Weak::strong_count(&weak), 0);
        assert_eq!(Weak::weak_count(&weak), 1);
        let inner = weak.inner;
        drop(weak);
        unsafe {
            assert_eq!((*inner.as_ptr()).strong.get(), 0);
            assert_eq!((*inner.as_ptr()).weak.get(), 0);
        }
    }

    #[test]
    #[should_panic = "inner layout"]
    fn wrong_layout_panics() {
        use core::convert::TryInto;

        struct Foo(u32);

        let slab: Bump<[u8; 1024]> = Bump::uninit();
        let layout = Layout::new::<Foo>().try_into().unwrap();
        let wrong_alloc = slab.alloc_layout(layout).unwrap();

        let _ = Rc::new(Foo(0), wrong_alloc.uninit);
    }
}