1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use alloc::{collections::BTreeMap, string::ToString, vec::Vec};

use utils::{ByteReader, DeserializationError, Serializable};

use crate::{errors::MerkleTreeError, Hasher};

// CONSTANTS
// ================================================================================================

pub(super) const MAX_PATHS: usize = 255;

// BATCH MERKLE PROOF
// ================================================================================================

/// Multiple Merkle paths aggregated into a single proof.
///
/// The aggregation is done in a way which removes all duplicate internal nodes, and thus,
/// it is possible to achieve non-negligible compression as compared to naively concatenating
/// individual Merkle paths. The algorithm is for aggregation is a variation of
/// [Octopus](https://eprint.iacr.org/2017/933).
///
/// Currently, at most 255 paths can be aggregated into a single proof. This limitation is
/// imposed primarily for serialization purposes.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct BatchMerkleProof<H: Hasher> {
    /// The leaves being proven
    pub leaves: Vec<H::Digest>,
    /// Hashes of Merkle Tree proof values above the leaf layer
    pub nodes: Vec<Vec<H::Digest>>,
    /// Depth of the leaves
    pub depth: u8,
}

impl<H: Hasher> BatchMerkleProof<H> {
    /// Constructs a batch Merkle proof from individual Merkle authentication paths.
    ///
    /// # Panics
    /// Panics if:
    /// * No paths have been provided (i.e., `paths` is an empty slice).
    /// * More than 255 paths have been provided.
    /// * Number of paths is not equal to the number of indexes.
    /// * Not all paths have the same length.
    pub fn from_paths(paths: &[Vec<H::Digest>], indexes: &[usize]) -> BatchMerkleProof<H> {
        // TODO: optimize this to reduce amount of vector cloning.
        assert!(!paths.is_empty(), "at least one path must be provided");
        assert!(paths.len() <= MAX_PATHS, "number of paths cannot exceed {MAX_PATHS}");
        assert_eq!(paths.len(), indexes.len(), "number of paths must equal number of indexes");

        let depth = paths[0].len();

        // sort indexes in ascending order, and also re-arrange paths accordingly
        let mut path_map = BTreeMap::new();
        for (&index, path) in indexes.iter().zip(paths.iter().cloned()) {
            assert_eq!(depth, path.len(), "not all paths have the same length");
            path_map.insert(index, path);
        }
        let indexes = path_map.keys().cloned().collect::<Vec<_>>();
        let paths = path_map.values().cloned().collect::<Vec<_>>();
        path_map.clear();

        let mut leaves = vec![H::Digest::default(); indexes.len()];
        let mut nodes: Vec<Vec<H::Digest>> = Vec::with_capacity(indexes.len());

        // populate values and the first layer of proof nodes
        let mut i = 0;
        while i < indexes.len() {
            leaves[i] = paths[i][0];
            if indexes.len() > i + 1 && are_siblings(indexes[i], indexes[i + 1]) {
                leaves[i + 1] = paths[i][1];
                nodes.push(vec![]);
                i += 1;
            } else {
                nodes.push(vec![paths[i][1]]);
            }
            path_map.insert(indexes[i] >> 1, paths[i].clone());
            i += 1;
        }

        // populate all remaining layers of proof nodes
        for d in 2..depth {
            let indexes = path_map.keys().cloned().collect::<Vec<_>>();
            let mut next_path_map = BTreeMap::new();

            let mut i = 0;
            while i < indexes.len() {
                let index = indexes[i];
                let path = path_map.get(&index).unwrap();
                if indexes.len() > i + 1 && are_siblings(index, indexes[i + 1]) {
                    i += 1;
                } else {
                    nodes[i].push(path[d]);
                }
                next_path_map.insert(index >> 1, path.clone());
                i += 1;
            }

            core::mem::swap(&mut path_map, &mut next_path_map);
        }

        BatchMerkleProof { leaves, nodes, depth: (depth - 1) as u8 }
    }

    /// Computes a node to which all Merkle paths aggregated in this proof resolve.
    ///
    /// # Errors
    /// Returns an error if:
    /// * No indexes were provided (i.e., `indexes` is an empty slice).
    /// * Number of provided indexes is greater than 255.
    /// * Any of the specified `indexes` is greater than or equal to the number of leaves in the
    ///   tree for which this batch proof was generated.
    /// * List of indexes contains duplicates.
    /// * The proof does not resolve to a single root.
    pub fn get_root(&self, indexes: &[usize]) -> Result<H::Digest, MerkleTreeError> {
        if indexes.is_empty() {
            return Err(MerkleTreeError::TooFewLeafIndexes);
        }
        if indexes.len() > MAX_PATHS {
            return Err(MerkleTreeError::TooManyLeafIndexes(MAX_PATHS, indexes.len()));
        }

        let mut buf = [H::Digest::default(); 2];
        let mut v = BTreeMap::new();

        // replace odd indexes, offset, and sort in ascending order
        let index_map = super::map_indexes(indexes, self.depth as usize)?;
        let indexes = super::normalize_indexes(indexes);
        if indexes.len() != self.nodes.len() {
            return Err(MerkleTreeError::InvalidProof);
        }

        // for each index use values to compute parent nodes
        let offset = 2usize.pow(self.depth as u32);
        let mut next_indexes: Vec<usize> = Vec::new();
        let mut proof_pointers: Vec<usize> = Vec::with_capacity(indexes.len());
        for (i, index) in indexes.into_iter().enumerate() {
            // copy values of leaf sibling leaf nodes into the buffer
            match index_map.get(&index) {
                Some(&index1) => {
                    if self.leaves.len() <= index1 {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    buf[0] = self.leaves[index1];
                    match index_map.get(&(index + 1)) {
                        Some(&index2) => {
                            if self.leaves.len() <= index2 {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.leaves[index2];
                            proof_pointers.push(0);
                        },
                        None => {
                            if self.nodes[i].is_empty() {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.nodes[i][0];
                            proof_pointers.push(1);
                        },
                    }
                },
                None => {
                    if self.nodes[i].is_empty() {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    buf[0] = self.nodes[i][0];
                    match index_map.get(&(index + 1)) {
                        Some(&index2) => {
                            if self.leaves.len() <= index2 {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.leaves[index2];
                        },
                        None => return Err(MerkleTreeError::InvalidProof),
                    }
                    proof_pointers.push(1);
                },
            }

            // hash sibling nodes into their parent
            let parent = H::merge(&buf);

            let parent_index = (offset + index) >> 1;
            v.insert(parent_index, parent);
            next_indexes.push(parent_index);
        }

        // iteratively move up, until we get to the root
        for _ in 1..self.depth {
            let indexes = next_indexes.clone();
            next_indexes.truncate(0);

            let mut i = 0;
            while i < indexes.len() {
                let node_index = indexes[i];
                let sibling_index = node_index ^ 1;

                // determine the sibling
                let sibling: H::Digest;
                if i + 1 < indexes.len() && indexes[i + 1] == sibling_index {
                    sibling = match v.get(&sibling_index) {
                        Some(sibling) => *sibling,
                        None => return Err(MerkleTreeError::InvalidProof),
                    };
                    i += 1;
                } else {
                    let pointer = proof_pointers[i];
                    if self.nodes[i].len() <= pointer {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    sibling = self.nodes[i][pointer];
                    proof_pointers[i] += 1;
                }

                // get the node from the map of hashed nodes
                let node = match v.get(&node_index) {
                    Some(node) => node,
                    None => return Err(MerkleTreeError::InvalidProof),
                };

                // compute parent node from node and sibling
                if node_index & 1 != 0 {
                    buf[0] = sibling;
                    buf[1] = *node;
                } else {
                    buf[0] = *node;
                    buf[1] = sibling;
                }
                let parent = H::merge(&buf);

                // add the parent node to the next set of nodes
                let parent_index = node_index >> 1;
                v.insert(parent_index, parent);
                next_indexes.push(parent_index);

                i += 1;
            }
        }
        v.remove(&1).ok_or(MerkleTreeError::InvalidProof)
    }

    /// Computes the uncompressed Merkle paths which aggregate to this proof.
    ///
    /// # Errors
    /// Returns an error if:
    /// * No indexes were provided (i.e., `indexes` is an empty slice).
    /// * Number of provided indexes is greater than 255.
    /// * Number of provided indexes does not match the number of leaf nodes in the proof.
    pub fn into_paths(self, indexes: &[usize]) -> Result<Vec<Vec<H::Digest>>, MerkleTreeError> {
        if indexes.is_empty() {
            return Err(MerkleTreeError::TooFewLeafIndexes);
        }
        if indexes.len() > MAX_PATHS {
            return Err(MerkleTreeError::TooManyLeafIndexes(MAX_PATHS, indexes.len()));
        }
        if indexes.len() != self.leaves.len() {
            return Err(MerkleTreeError::InvalidProof);
        }

        let mut partial_tree_map = BTreeMap::new();

        for (&i, leaf) in indexes.iter().zip(self.leaves.iter()) {
            partial_tree_map.insert(i + (1 << (self.depth)), *leaf);
        }

        let mut buf = [H::Digest::default(); 2];
        let mut v = BTreeMap::new();

        // replace odd indexes, offset, and sort in ascending order
        let original_indexes = indexes;
        let index_map = super::map_indexes(indexes, self.depth as usize)?;
        let indexes = super::normalize_indexes(indexes);
        if indexes.len() != self.nodes.len() {
            return Err(MerkleTreeError::InvalidProof);
        }

        // for each index use values to compute parent nodes
        let offset = 2usize.pow(self.depth as u32);
        let mut next_indexes: Vec<usize> = Vec::new();
        let mut proof_pointers: Vec<usize> = Vec::with_capacity(indexes.len());
        for (i, index) in indexes.into_iter().enumerate() {
            // copy values of leaf sibling leaf nodes into the buffer
            match index_map.get(&index) {
                Some(&index1) => {
                    if self.leaves.len() <= index1 {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    buf[0] = self.leaves[index1];
                    match index_map.get(&(index + 1)) {
                        Some(&index2) => {
                            if self.leaves.len() <= index2 {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.leaves[index2];
                            proof_pointers.push(0);
                        },
                        None => {
                            if self.nodes[i].is_empty() {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.nodes[i][0];
                            proof_pointers.push(1);
                        },
                    }
                },
                None => {
                    if self.nodes[i].is_empty() {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    buf[0] = self.nodes[i][0];
                    match index_map.get(&(index + 1)) {
                        Some(&index2) => {
                            if self.leaves.len() <= index2 {
                                return Err(MerkleTreeError::InvalidProof);
                            }
                            buf[1] = self.leaves[index2];
                        },
                        None => return Err(MerkleTreeError::InvalidProof),
                    }
                    proof_pointers.push(1);
                },
            }

            // hash sibling nodes into their parent and add it to partial_tree
            let parent = H::merge(&buf);
            partial_tree_map.insert(offset + index, buf[0]);
            partial_tree_map.insert((offset + index) ^ 1, buf[1]);
            let parent_index = (offset + index) >> 1;
            v.insert(parent_index, parent);
            next_indexes.push(parent_index);
            partial_tree_map.insert(parent_index, parent);
        }

        // iteratively move up, until we get to the root
        for _ in 1..self.depth {
            let indexes = next_indexes.clone();
            next_indexes.clear();

            let mut i = 0;
            while i < indexes.len() {
                let node_index = indexes[i];
                let sibling_index = node_index ^ 1;

                // determine the sibling
                let sibling = if i + 1 < indexes.len() && indexes[i + 1] == sibling_index {
                    i += 1;
                    match v.get(&sibling_index) {
                        Some(sibling) => *sibling,
                        None => return Err(MerkleTreeError::InvalidProof),
                    }
                } else {
                    let pointer = proof_pointers[i];
                    if self.nodes[i].len() <= pointer {
                        return Err(MerkleTreeError::InvalidProof);
                    }
                    proof_pointers[i] += 1;
                    self.nodes[i][pointer]
                };

                // get the node from the map of hashed nodes
                let node = match v.get(&node_index) {
                    Some(node) => node,
                    None => return Err(MerkleTreeError::InvalidProof),
                };

                // compute parent node from node and sibling
                partial_tree_map.insert(node_index ^ 1, sibling);
                let parent = if node_index & 1 != 0 {
                    H::merge(&[sibling, *node])
                } else {
                    H::merge(&[*node, sibling])
                };

                // add the parent node to the next set of nodes and partial_tree
                let parent_index = node_index >> 1;
                v.insert(parent_index, parent);
                next_indexes.push(parent_index);
                partial_tree_map.insert(parent_index, parent);

                i += 1;
            }
        }

        original_indexes
            .iter()
            .map(|&i| get_path::<H>(i, &partial_tree_map, self.depth as usize))
            .collect()
    }

    // SERIALIZATION / DESERIALIZATION
    // --------------------------------------------------------------------------------------------

    /// Converts all internal proof nodes into a vector of bytes.
    ///
    /// # Panics
    /// Panics if:
    /// * The proof contains more than 255 Merkle paths.
    /// * The Merkle paths consist of more than 255 nodes.
    pub fn serialize_nodes(&self) -> Vec<u8> {
        let mut result = Vec::new();

        // record total number of node vectors
        assert!(self.nodes.len() <= u8::MAX as usize, "too many paths");
        result.push(self.nodes.len() as u8);

        // record each node vector as individual bytes
        for nodes in self.nodes.iter() {
            assert!(nodes.len() <= u8::MAX as usize, "too many nodes");
            // record the number of nodes, and append all nodes to the paths buffer
            result.push(nodes.len() as u8);
            for node in nodes.iter() {
                result.append(&mut node.to_bytes());
            }
        }

        result
    }

    /// Parses internal nodes from the provided `node_bytes`, and constructs a batch Merkle proof
    /// from these nodes, provided `leaves`, and provided tree `depth`.
    ///
    /// # Errors
    /// Returns an error if:
    /// * No leaves were provided (i.e., `leaves` is an empty slice).
    /// * Number of provided leaves is greater than 255.
    /// * Tree `depth` was set to zero.
    /// * `node_bytes` could not be deserialized into a valid set of internal nodes.
    pub fn deserialize<R: ByteReader>(
        node_bytes: &mut R,
        leaves: Vec<H::Digest>,
        depth: u8,
    ) -> Result<Self, DeserializationError> {
        if depth == 0 {
            return Err(DeserializationError::InvalidValue(
                "tree depth must be greater than zero".to_string(),
            ));
        }
        if leaves.is_empty() {
            return Err(DeserializationError::InvalidValue(
                "at lease one leaf must be provided".to_string(),
            ));
        }
        if leaves.len() > MAX_PATHS {
            return Err(DeserializationError::InvalidValue(format!(
                "number of leaves cannot exceed {}, but {} were provided",
                MAX_PATHS,
                leaves.len()
            )));
        }

        let num_node_vectors = node_bytes.read_u8()? as usize;
        let mut nodes = Vec::with_capacity(num_node_vectors);
        for _ in 0..num_node_vectors {
            // read the number of digests in the vector
            let num_digests = node_bytes.read_u8()? as usize;

            // read the digests and add them to the node vector
            let digests = node_bytes.read_many(num_digests)?;
            nodes.push(digests);
        }

        Ok(BatchMerkleProof { leaves, nodes, depth })
    }
}

// HELPER FUNCTIONS
// ================================================================================================

/// Two nodes are siblings if index of the left node is even and right node
/// immediately follows the left node.
fn are_siblings(left: usize, right: usize) -> bool {
    left & 1 == 0 && right - 1 == left
}

/// Computes the Merkle path from the computed (partial) tree.
pub fn get_path<H: Hasher>(
    index: usize,
    tree: &BTreeMap<usize, <H as Hasher>::Digest>,
    depth: usize,
) -> Result<Vec<H::Digest>, MerkleTreeError> {
    let mut index = index + (1 << depth);
    let leaf = if let Some(leaf) = tree.get(&index) {
        *leaf
    } else {
        return Err(MerkleTreeError::InvalidProof);
    };

    let mut proof = vec![leaf];
    while index > 1 {
        let leaf = if let Some(leaf) = tree.get(&(index ^ 1)) {
            *leaf
        } else {
            return Err(MerkleTreeError::InvalidProof);
        };

        proof.push(leaf);
        index >>= 1;
    }

    Ok(proof)
}