1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#[cfg(test)]
mod buffer_test;

use crate::error::{Error, Result};

use std::sync::Arc;
use tokio::sync::{Mutex, Notify};
use tokio::time::{timeout, Duration};

const MIN_SIZE: usize = 2048;
const CUTOFF_SIZE: usize = 128 * 1024;
const MAX_SIZE: usize = 4 * 1024 * 1024;

/// Buffer allows writing packets to an intermediate buffer, which can then be read form.
/// This is verify similar to bytes.Buffer but avoids combining multiple writes into a single read.
#[derive(Debug)]
struct BufferInternal {
    data: Vec<u8>,
    head: usize,
    tail: usize,

    closed: bool,
    subs: bool,

    count: usize,
    limit_count: usize,
    limit_size: usize,
}

impl BufferInternal {
    /// available returns true if the buffer is large enough to fit a packet
    /// of the given size, taking overhead into account.
    fn available(&self, size: usize) -> bool {
        let mut available = self.head as isize - self.tail as isize;
        if available <= 0 {
            available += self.data.len() as isize;
        }
        // we interpret head=tail as empty, so always keep a byte free
        size as isize + 2 < available
    }

    /// grow increases the size of the buffer.  If it returns nil, then the
    /// buffer has been grown.  It returns ErrFull if hits a limit.
    fn grow(&mut self) -> Result<()> {
        let mut newsize = if self.data.len() < CUTOFF_SIZE {
            2 * self.data.len()
        } else {
            5 * self.data.len() / 4
        };

        if newsize < MIN_SIZE {
            newsize = MIN_SIZE
        }
        if (self.limit_size == 0/*|| sizeHardlimit*/) && newsize > MAX_SIZE {
            newsize = MAX_SIZE
        }

        // one byte slack
        if self.limit_size > 0 && newsize > self.limit_size + 1 {
            newsize = self.limit_size + 1
        }

        if newsize <= self.data.len() {
            return Err(Error::ErrBufferFull);
        }

        let mut newdata: Vec<u8> = vec![0; newsize];

        let mut n;
        if self.head <= self.tail {
            // data was contiguous
            n = self.tail - self.head;
            newdata[..n].copy_from_slice(&self.data[self.head..self.tail]);
        } else {
            // data was discontiguous
            n = self.data.len() - self.head;
            newdata[..n].copy_from_slice(&self.data[self.head..]);
            newdata[n..n + self.tail].copy_from_slice(&self.data[..self.tail]);
            n += self.tail;
        }
        self.head = 0;
        self.tail = n;
        self.data = newdata;

        Ok(())
    }

    fn size(&self) -> usize {
        let mut size = self.tail as isize - self.head as isize;
        if size < 0 {
            size += self.data.len() as isize;
        }
        size as usize
    }
}

#[derive(Debug, Clone)]
pub struct Buffer {
    buffer: Arc<Mutex<BufferInternal>>,
    notify: Arc<Notify>,
}

impl Buffer {
    pub fn new(limit_count: usize, limit_size: usize) -> Self {
        Buffer {
            buffer: Arc::new(Mutex::new(BufferInternal {
                data: vec![],
                head: 0,
                tail: 0,

                closed: false,
                subs: false,

                count: 0,
                limit_count,
                limit_size,
            })),
            notify: Arc::new(Notify::new()),
        }
    }

    /// Write appends a copy of the packet data to the buffer.
    /// Returns ErrFull if the packet doesn't fit.
    /// Note that the packet size is limited to 65536 bytes since v0.11.0
    /// due to the internal data structure.
    pub async fn write(&self, packet: &[u8]) -> Result<usize> {
        if packet.len() >= 0x10000 {
            return Err(Error::ErrPacketTooBig);
        }

        let mut b = self.buffer.lock().await;

        if b.closed {
            return Err(Error::ErrBufferClosed);
        }

        if (b.limit_count > 0 && b.count >= b.limit_count)
            || (b.limit_size > 0 && b.size() + 2 + packet.len() > b.limit_size)
        {
            return Err(Error::ErrBufferFull);
        }

        // grow the buffer until the packet fits
        while !b.available(packet.len()) {
            b.grow()?;
        }

        // store the length of the packet
        let tail = b.tail;
        b.data[tail] = (packet.len() >> 8) as u8;
        b.tail += 1;
        if b.tail >= b.data.len() {
            b.tail = 0;
        }

        let tail = b.tail;
        b.data[tail] = packet.len() as u8;
        b.tail += 1;
        if b.tail >= b.data.len() {
            b.tail = 0;
        }

        // store the packet
        let end = std::cmp::min(b.data.len(), b.tail + packet.len());
        let n = end - b.tail;
        let tail = b.tail;
        b.data[tail..end].copy_from_slice(&packet[..n]);
        b.tail += n;
        if b.tail >= b.data.len() {
            // we reached the end, wrap around
            let m = packet.len() - n;
            b.data[..m].copy_from_slice(&packet[n..]);
            b.tail = m;
        }
        b.count += 1;

        if b.subs {
            // we have other are waiting data
            self.notify.notify_one();
            b.subs = false;
        }

        Ok(packet.len())
    }

    // Read populates the given byte slice, returning the number of bytes read.
    // Blocks until data is available or the buffer is closed.
    // Returns io.ErrShortBuffer is the packet is too small to copy the Write.
    // Returns io.EOF if the buffer is closed.
    pub async fn read(&self, packet: &mut [u8], duration: Option<Duration>) -> Result<usize> {
        loop {
            {
                // use {} to let LockGuard RAII
                let mut b = self.buffer.lock().await;

                if b.head != b.tail {
                    // decode the packet size
                    let n1 = b.data[b.head];
                    b.head += 1;
                    if b.head >= b.data.len() {
                        b.head = 0;
                    }
                    let n2 = b.data[b.head];
                    b.head += 1;
                    if b.head >= b.data.len() {
                        b.head = 0;
                    }
                    let count = ((n1 as usize) << 8) | n2 as usize;

                    // determine the number of bytes we'll actually copy
                    let mut copied = count;
                    if copied > packet.len() {
                        copied = packet.len();
                    }

                    // copy the data
                    if b.head + copied < b.data.len() {
                        packet[..copied].copy_from_slice(&b.data[b.head..b.head + copied]);
                    } else {
                        let k = b.data.len() - b.head;
                        packet[..k].copy_from_slice(&b.data[b.head..]);
                        packet[k..copied].copy_from_slice(&b.data[..copied - k]);
                    }

                    // advance head, discarding any data that wasn't copied
                    b.head += count;
                    if b.head >= b.data.len() {
                        b.head -= b.data.len();
                    }

                    if b.head == b.tail {
                        // the buffer is empty, reset to beginning
                        // in order to improve cache locality.
                        b.head = 0;
                        b.tail = 0;
                    }

                    b.count -= 1;

                    if copied < count {
                        return Err(Error::ErrBufferShort);
                    }
                    return Ok(copied);
                } else {
                    // Dont have data -> need wait
                    b.subs = true;
                }

                if b.closed {
                    return Err(Error::ErrBufferClosed);
                }
            }

            // Wait for signal.
            if let Some(d) = duration {
                if timeout(d, self.notify.notified()).await.is_err() {
                    return Err(Error::ErrTimeout);
                }
            } else {
                self.notify.notified().await;
            }
        }
    }

    // Close will unblock any readers and prevent future writes.
    // Data in the buffer can still be read, returning io.EOF when fully depleted.
    pub async fn close(&self) {
        // note: We don't use defer so we can close the notify channel after unlocking.
        // This will unblock goroutines that can grab the lock immediately, instead of blocking again.
        let mut b = self.buffer.lock().await;

        if b.closed {
            return;
        }

        b.closed = true;
        self.notify.notify_waiters();
    }

    pub async fn is_closed(&self) -> bool {
        let b = self.buffer.lock().await;

        b.closed
    }

    // Count returns the number of packets in the buffer.
    pub async fn count(&self) -> usize {
        let b = self.buffer.lock().await;

        b.count
    }

    // set_limit_count controls the maximum number of packets that can be buffered.
    // Causes Write to return ErrFull when this limit is reached.
    // A zero value will disable this limit.
    pub async fn set_limit_count(&self, limit: usize) {
        let mut b = self.buffer.lock().await;

        b.limit_count = limit
    }

    // Size returns the total byte size of packets in the buffer.
    pub async fn size(&self) -> usize {
        let b = self.buffer.lock().await;

        b.size()
    }

    // set_limit_size controls the maximum number of bytes that can be buffered.
    // Causes Write to return ErrFull when this limit is reached.
    // A zero value means 4MB since v0.11.0.
    //
    // User can set packetioSizeHardlimit build tag to enable 4MB hardlimit.
    // When packetioSizeHardlimit build tag is set, set_limit_size exceeding
    // the hardlimit will be silently discarded.
    pub async fn set_limit_size(&self, limit: usize) {
        let mut b = self.buffer.lock().await;

        b.limit_size = limit
    }
}