1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
use {Handler, Proxy};
use std::any::Any;
use std::io::{Error as IoError, Result as IoResult};
use std::io::Write;
use std::ops::{Deref, DerefMut};
use std::os::raw::{c_int, c_void};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicPtr};
use wayland_sys::RUST_MANAGED;

use wayland_sys::client::*;
use wayland_sys::common::*;

type ProxyUserData = (*mut EventQueueHandle, *mut c_void, Arc<(AtomicBool, AtomicPtr<()>)>);

/// Status of a registration attempt of a proxy.
pub enum RegisterStatus {
    /// The proxy was properly registered to this event queue & handler.
    Registered,
    /// The proxy was not registered because it is not managed by `wayland-client`.
    Unmanaged,
    /// The proxy was not registered because it is already destroyed.
    Dead,
}

/// Handle to an event queue
///
/// This handle gives you access to methods on an event queue
/// that are safe to do from within a callback.
///
/// They are also available on an `EventQueue` object via `Deref`.
pub struct EventQueueHandle {
    handlers: Vec<Option<Box<Any + Send>>>,
    wlevq: Option<*mut wl_event_queue>,
}

/// A trait to initialize handlers after they've been inserted in an event queue
///
/// Works with the `add_handler_with_init` method of `EventQueueHandle`.
pub trait Init {
    /// Init the handler
    ///
    /// `index` is the current index of the handler in the event queue (you can
    /// use it to register objects to it)
    fn init(&mut self, evqh: &mut EventQueueHandle, index: usize);
}

impl EventQueueHandle {
    /// Register a proxy to a handler of this event queue.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    ///
    /// This overwrites any precedently set Handler for this proxy.
    ///
    /// Returns appropriately and does nothing if this proxy is dead or already managed by
    /// something else than this library.
    pub fn register<P, H>(&mut self, proxy: &P, handler_id: usize) -> RegisterStatus
    where
        P: Proxy,
        H: Handler<P> + Any + Send + 'static,
    {
        let h = self.handlers[handler_id]
            .as_ref()
            .expect("Handler has already been removed.")
            .downcast_ref::<H>()
            .expect("Handler type do not match.");

        match proxy.status() {
            ::Liveness::Dead => return RegisterStatus::Dead,
            ::Liveness::Unmanaged => return RegisterStatus::Unmanaged,
            ::Liveness::Alive => { /* ok, we can continue */ }
        }

        unsafe {
            let data: *mut ProxyUserData =
                ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_proxy_get_user_data, proxy.ptr()) as *mut _;
            // This cast from *const to *mut is legit because we enforce that a Handler
            // can only be assigned to a single EventQueue.
            // (this is actually the whole point of the design of this lib)
            (&mut *data).0 = self as *const _ as *mut _;
            (&mut *data).1 = h as *const _ as *mut c_void;
            // even if this call fails, we updated the user_data, so the new handler is in place.
            ffi_dispatch!(
                WAYLAND_CLIENT_HANDLE,
                wl_proxy_add_dispatcher,
                proxy.ptr(),
                dispatch_func::<P, H>,
                &RUST_MANAGED as *const _ as *const _,
                data as *mut c_void
            );
            ffi_dispatch!(
                WAYLAND_CLIENT_HANDLE,
                wl_proxy_set_queue,
                proxy.ptr(),
                match self.wlevq {
                    Some(ptr) => ptr,
                    None => ::std::ptr::null_mut(),
                }
            );
        }
        RegisterStatus::Registered
    }

    fn insert_handler(&mut self, h: Box<Any + Send>) -> usize {
        {
            // artificial scope to make the borrow checker happy
            let empty_slot = self.handlers.iter_mut().enumerate().find(|&(_, ref s)| {
                s.is_none()
            });
            if let Some((id, slot)) = empty_slot {
                *slot = Some(h);
                return id;
            }
        }
        self.handlers.push(Some(h));
        self.handlers.len() - 1
    }

    /// Insert a new handler to this event queue
    ///
    /// Returns the index of this handler in the internal array, which is needed
    /// to register proxies to it.
    pub fn add_handler<H: Any + Send + 'static>(&mut self, handler: H) -> usize {
        self.insert_handler(Box::new(handler) as Box<Any + Send>)
    }

    /// Insert a new handler with init
    ///
    /// Allows you to insert handlers that require some interaction with the
    /// event loop in their initialization, like registering some objects to it.
    ///
    /// The handler must implement the `Init` trait, and its init method will
    /// be called after its insertion.
    pub fn add_handler_with_init<H: Init + Any + Send + 'static>(&mut self, handler: H) -> usize {
        let mut box_ = Box::new(handler);
        // this little juggling is to avoid the double-borrow, which is actually safe,
        // as handlers cannot be mutably accessed outside of an event-dispatch,
        // and this new handler cannot receive any events before the return
        // of this function
        let h = &mut *box_ as *mut H;
        let index = self.insert_handler(box_ as Box<Any + Send>);
        unsafe { (&mut *h).init(self, index) };
        index
    }

    /// Remove a handler previously inserted in this event loop and returns it.
    ///
    /// Panics if the requested type does not match the type of the stored handler
    /// or if the specified index was already removed.
    ///
    /// **Unsafety** This function is unsafe because removing a handler while some wayland
    /// objects are still registered to it can lead to access freed memory. Also, the index
    /// of this handler will be reused at next handler insertion.
    pub unsafe fn remove_handler<H: Any + Send + 'static>(&mut self, idx: usize) -> H {
        let is_type = self.handlers[idx]
            .as_ref()
            .expect("Handler has already been removed.")
            .is::<H>();
        assert!(is_type, "Handler type do not match.");
        *(self.handlers[idx].take().unwrap().downcast().unwrap())
    }
}

/// Guard to access internal state of an event queue
///
/// This guard allows you to get references to the handlers you
/// previously stored inside an event queue.
///
/// It borrows the event queue, so no event dispatching is possible
/// as long as the guard is in scope, for safety reasons.
pub struct StateGuard<'evq> {
    evq: &'evq mut EventQueue,
}

impl<'evq> StateGuard<'evq> {
    /// Get a reference to a handler
    ///
    /// Provides a reference to a handler stored in this event loop.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    pub fn get_handler<H: Any + 'static>(&self, handler_id: usize) -> &H {
        self.evq.handle.handlers[handler_id]
            .as_ref()
            .expect("Handler has already been removed")
            .downcast_ref::<H>()
            .expect("Handler type do not match.")
    }

    /// Get a mutable reference to a handler
    ///
    /// Provides a reference to a handler stored in this event loop.
    ///
    /// The H type must be provided and match the type of the targetted Handler, or
    /// it will panic.
    pub fn get_mut_handler<H: Any + 'static>(&mut self, handler_id: usize) -> &mut H {
        self.evq.handle.handlers[handler_id]
            .as_mut()
            .expect("Handler has already been removed")
            .downcast_mut::<H>()
            .expect("Handler type do not match.")
    }
}

/// An event queue managing wayland events
///
/// Each wayland object can receive events from the server. To handle these events
/// you must use a handler object: a struct (or enum) which you have implemented
/// the appropriate `Handler` traits on it (each wayland interface defines a `Handler`
/// trait in its module), and declared it using the `declare_handler!(..)` macro.
///
/// This handler contains the state all your handler methods will be able to access
/// via the `&mut self` argument. You can then instantiate your type, and give ownership of
/// the handler object to the event queue, via the `add_handler(..)` method. Then, each
/// wayland object must be registered to a handler via the `register(..)` method (or its events
/// will all be ignored).
///
/// The event queues also provides you control on the flow of the program, via the `dispatch()` and
/// `dispatch_pending()` methods.
///
/// ## example of use
///
/// ```ignore
/// struct MyHandler { /* ... */ }
///
/// impl wl_surface::Handler for MyHandler {
///     // implementation of the handler methods
/// }
///
/// declare_handler!(MyHandler, wl_surface::Handler, wl_surface::WlSurface);
///
/// fn main() {
///     /* ... setup of your environment ... */
///     let surface = compositor.create_surface().expect("Compositor cannot be destroyed.");
///     let my_id = eventqueue.add_handler(MyHandler::new());
///     eventqueue.register::<_, MyHandler>(&surface, my_id);
///
///     // main event loop
///     loop {
///         // flush requests to the server
///         display.flush().unwrap();
///         // dispatch events from the server, blocking if needed
///         eventqueue.dispatch().unwrap();
///     }
/// }
/// ```
pub struct EventQueue {
    handle: Box<EventQueueHandle>,
    display: *mut wl_display,
}

impl EventQueue {
    /// Dispatches events from the internal buffer.
    ///
    /// Dispatches all events to their appropriate handlers.
    /// If not events were in the internal buffer, will block until
    /// some events are read and dispatch them.
    /// This process can insert events in the internal buffers of
    /// other event queues.
    ///
    /// If an error is returned, your connection with the wayland
    /// compositor is probably lost.
    pub fn dispatch(&mut self) -> IoResult<u32> {
        let ret = match self.handle.wlevq {
            Some(evq) => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_queue,
                    self.display,
                    evq
                )
            },
            None => unsafe { ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_dispatch, self.display) },
        };
        if ret >= 0 {
            Ok(ret as u32)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Dispatches pending events from the internal buffer.
    ///
    /// Dispatches all events to their appropriate handlers.
    /// Never blocks, if not events were pending, simply returns
    /// `Ok(0)`.
    ///
    /// If an error is returned, your connection with the wayland
    /// compositor is probably lost.
    pub fn dispatch_pending(&mut self) -> IoResult<u32> {
        let ret = match self.handle.wlevq {
            Some(evq) => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_queue_pending,
                    self.display,
                    evq
                )
            },
            None => unsafe {
                ffi_dispatch!(
                    WAYLAND_CLIENT_HANDLE,
                    wl_display_dispatch_pending,
                    self.display
                )
            },
        };
        if ret >= 0 {
            Ok(ret as u32)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Synchronous roundtrip
    ///
    /// This call will cause a synchonous roundtrip with the wayland server. It will block until all
    /// pending requests of this queue are send to the server and it has processed all of them and
    /// send the appropriate events.
    ///
    /// Handlers are called as a consequence.
    ///
    /// On success returns the number of dispatched events.
    pub fn sync_roundtrip(&mut self) -> IoResult<i32> {
        let ret = unsafe {
            match self.handle.wlevq {
                Some(evtq) => {
                    ffi_dispatch!(
                        WAYLAND_CLIENT_HANDLE,
                        wl_display_roundtrip_queue,
                        self.display,
                        evtq
                    )
                }
                None => ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_roundtrip, self.display),
            }
        };
        if ret >= 0 {
            Ok(ret)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Get a handle to the internal state
    ///
    /// The returned guard object allows you to get references
    /// to the handler objects you previously inserted in this
    /// event queue.
    pub fn state(&mut self) -> StateGuard {
        StateGuard { evq: self }
    }

    /// Prepare an conccurent read
    ///
    /// Will declare your intention to read events from the server socket.
    ///
    /// Will return `None` if there are still some events awaiting dispatch on this EventIterator.
    /// In this case, you need to call `dispatch_pending()` before calling this method again.
    ///
    /// As long as the returned guard is in scope, no events can be dispatched to any event iterator.
    ///
    /// The guard can then be destroyed by two means:
    ///
    ///  - Calling its `cancel()` method (or letting it go out of scope): the read intention will
    ///    be cancelled
    ///  - Calling its `read_events()` method: will block until all existing guards are destroyed
    ///    by one of these methods, then events will be read and all blocked `read_events()` calls
    ///    will return.
    ///
    /// This call will otherwise not block on the server socket if it is empty, and return
    /// an io error `WouldBlock` in such cases.
    pub fn prepare_read(&self) -> Option<ReadEventsGuard> {
        let ret = unsafe {
            match self.handle.wlevq {
                Some(evtq) => {
                    ffi_dispatch!(
                        WAYLAND_CLIENT_HANDLE,
                        wl_display_prepare_read_queue,
                        self.display,
                        evtq
                    )
                }
                None => ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_prepare_read, self.display),
            }
        };
        if ret >= 0 {
            Some(ReadEventsGuard { display: self.display })
        } else {
            None
        }
    }
}

unsafe impl Send for EventQueue {}

impl Deref for EventQueue {
    type Target = EventQueueHandle;
    fn deref(&self) -> &EventQueueHandle {
        &*self.handle
    }
}

impl DerefMut for EventQueue {
    fn deref_mut(&mut self) -> &mut EventQueueHandle {
        &mut *self.handle
    }
}

/// A guard over a read intention.
///
/// See `EventQueue::prepare_read()` for details about its use.
pub struct ReadEventsGuard {
    display: *mut wl_display,
}

impl ReadEventsGuard {
    /// Read events
    ///
    /// Reads events from the server socket. If other `ReadEventsGuard` exists, will block
    /// until they are all consumed or destroyed.
    pub fn read_events(self) -> IoResult<i32> {
        let ret = unsafe { ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_read_events, self.display) };
        // Don't run destructor that would cancel the read intent
        ::std::mem::forget(self);
        if ret >= 0 {
            Ok(ret)
        } else {
            Err(IoError::last_os_error())
        }
    }

    /// Cancel the read
    ///
    /// Will cancel the read intention associated with this guard. Never blocks.
    ///
    /// Has the same effet as letting the guard go out of scope.
    pub fn cancel(self) {
        // just run the destructor
    }
}

impl Drop for ReadEventsGuard {
    fn drop(&mut self) {
        unsafe { ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_display_cancel_read, self.display) }
    }
}

pub unsafe fn create_event_queue(display: *mut wl_display, evq: Option<*mut wl_event_queue>) -> EventQueue {
    EventQueue {
        display: display,
        handle: Box::new(EventQueueHandle {
            handlers: Vec::new(),
            wlevq: evq,
        }),
    }
}

unsafe extern "C" fn dispatch_func<P: Proxy, H: Handler<P>>(_impl: *const c_void, proxy: *mut c_void,
                                                            opcode: u32, _msg: *const wl_message,
                                                            args: *const wl_argument)
                                                            -> c_int {
    // sanity check, if it triggers, it is a bug
    if _impl != &RUST_MANAGED as *const _ as *const _ {
        let _ = write!(
            ::std::io::stderr(),
            "[wayland-client error] Dispatcher got called for a message on a non-managed object."
        );
        ::libc::abort();
    }
    // We don't need to worry about panic-safeness, because if there is a panic,
    // we'll abort the process, so no access to corrupted data is possible.
    let ret = ::std::panic::catch_unwind(move || {
        let proxy = P::from_ptr_initialized(proxy as *mut wl_proxy);
        let data = &mut *(ffi_dispatch!(WAYLAND_CLIENT_HANDLE, wl_proxy_get_user_data, proxy.ptr()) as
                              *mut ProxyUserData);
        let evqhandle = &mut *data.0;
        let handler = &mut *(data.1 as *mut H);
        handler.message(evqhandle, &proxy, opcode, args)
    });
    match ret {
        Ok(Ok(())) => return 0,   // all went well
        Ok(Err(())) => {
            // an unknown opcode was dispatched, this is not normal
            let _ = write!(
                ::std::io::stderr(),
                "[wayland-client error] Attempted to dispatch unknown opcode {} for {}, aborting.",
                opcode, P::interface_name()
            );
            ::libc::abort();
        }
        Err(_) => {
            // a panic occured
            let _ = write!(
                ::std::io::stderr(),
                "[wayland-client error] A handler for {} panicked, aborting.",
                P::interface_name()
            );
            ::libc::abort();
        }
    }
}

/// Synonym of the declare_handler! macro
///
/// This more distinctive can be used for projects that need to use
/// both the client-side and server-side macros.
#[macro_export]
macro_rules! client_declare_handler(
    ($handler_struct: ident <$($tyarg:ident : [$($trait: ident $(<$($traitarg:ty),*>)*),*]),*>, $handler_trait: path, $handled_type: ty) => {
        unsafe impl<$($tyarg : $($trait $(<$($traitarg),*>)* +)* 'static),*> $crate::Handler<$handled_type> for $handler_struct<$($tyarg),*> {
            unsafe fn message(&mut self,
                              evq: &mut $crate::EventQueueHandle,
                              proxy: &$handled_type,
                              opcode: u32,
                              args: *const $crate::sys::wl_argument
                             ) -> ::std::result::Result<(),()> {
                <$handler_trait>::__message(self, evq, proxy, opcode, args)
            }
        }
    };
    ($handler_struct: ident, $handler_trait: path, $handled_type: ty) => {
        unsafe impl $crate::Handler<$handled_type> for $handler_struct {
            unsafe fn message(&mut self,
                              evq: &mut $crate::EventQueueHandle,
                              proxy: &$handled_type,
                              opcode: u32,
                              args: *const $crate::sys::wl_argument
                             ) -> ::std::result::Result<(),()> {
                <$handler_trait>::__message(self, evq, proxy, opcode, args)
            }
        }
    };
);


/// Registers a handler type so it can be used in event queue
///
/// After having implemented the appropriate Handler trait for your type,
/// declare it via this macro, like this:
///
/// ```ignore
/// struct MyHandler;
///
/// impl wl_foo::Handler for MyHandler {
///     ...
/// }
///
/// declare_handler!(MyHandler, wl_foo::Handler, wl_foo::WlFoo);
/// ```
///
/// If your type has type arguments, they must be specified using this special
/// syntax to describe constraints on them:
///
/// ```ignore
/// // Note that even if there are no constraints on U, there is a need to put this "empty list"
/// declare_handler!(MyHandler<T: [Trait1, Trait2], U: []>, wl_foo::Handler, wl_foo::WlFoo);
/// ```
#[macro_export]
macro_rules! declare_handler(
    ($handler_struct: ident <$($tyarg:ident : [$($trait: ident $(<$($traitarg:ty),*>)*),*]),*>, $handler_trait: path, $handled_type: ty) => {
        client_declare_handler!($handler_struct<$($tyarg: [$($trait $(<$($traitarg),*>)*),*]),*>, $handler_trait, $handled_type);
    };
    ($handler_struct: ident, $handler_trait: path, $handled_type: ty) => {
        client_declare_handler!($handler_struct, $handler_trait, $handled_type);
    };
);

/// Synonym of the declare_delegating_handler! macro
///
/// This more distinctive can be used for projects that need to use
/// both the client-side and server-side macros.
#[macro_export]
macro_rules! client_declare_delegating_handler(
    ($handler_struct: ident <$($tyarg:ident : [$($trait: ident $(<$($traitarg:ty),*>)*),*]),*>, $($handler_field: ident).+ , $handler_trait: path, $handled_type: ty) => {
        unsafe impl<$($tyarg : $($trait $(<$($traitarg),*>)* +)* 'static),*> $crate::Handler<$handled_type> for $handler_struct<$($tyarg),*> {
            unsafe fn message(&mut self,
                              evq: &mut $crate::EventQueueHandle,
                              proxy: &$handled_type,
                              opcode: u32,
                              args: *const $crate::sys::wl_argument
                             ) -> ::std::result::Result<(),()> {
                <$handler_trait>::__message(&mut self.$($handler_field).+, evq, proxy, opcode, args)
            }
        }
    };
    ($handler_struct: ident, $($handler_field: ident).+ , $handler_trait: path, $handled_type: ty) => {
        unsafe impl $crate::Handler<$handled_type> for $handler_struct {
            unsafe fn message(&mut self,
                              evq: &mut $crate::EventQueueHandle,
                              proxy: &$handled_type,
                              opcode: u32,
                              args: *const $crate::sys::wl_argument
                             ) -> ::std::result::Result<(),()> {
                <$handler_trait>::__message(&mut self.$($handler_field).+, evq, proxy, opcode, args)
            }
        }
    };
);

/// Registers a handler type so it as delegating to one of its fields
///
/// This allows to declare your type as a handler, by delegating the impl
/// to one of its fields (or subfields).
///
/// ```ignore
/// // MySubHandler is a proper handler for wl_foo events
/// struct MySubHandler;
///
/// struct MyHandler {
///     sub: MySubHandler
/// }
///
/// declare_delegating_handler!(MySubHandler, sub, wl_foo::Handler, wl_foo::WlFoo);
/// ```
///
/// The syntax to use if your type has type arguments is the same as for `declare_handler!()`.
#[macro_export]
macro_rules! declare_delegating_handler(
    ($handler_struct: ident <$($tyarg:ident : [$($trait: ident $(<$($traitarg:ty),*>)*),*]),*>, $($handler_field: ident).+ , $handler_trait: path, $handled_type: ty) => {
        client_declare_delegating_handler!($handler_struct<$($tyarg: [$($trait $(<$($traitarg),*>)*),*]),*>, $($handler_field).+, $handler_trait, $handled_type);
    };
    ($handler_struct: ident, $($handler_field: ident).+ , $handler_trait: path, $handled_type: ty) => {
        client_declare_delegating_handler!($handler_struct, $($handler_field).+, $handler_trait, $handled_type);
    };
);