1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
extern crate rustfft;
extern crate num;
extern crate stream_dct;
extern crate rand;

use rustfft::FFT;
use num::complex::Complex;
use std::iter::Peekable;
use std::f32;

const LOWER_FREQ: 		f32 = 20.0;
const UPPER_FREQ: 		f32 = 8000.0;
const FRAME_DURATION: 	f32 = 0.025;
const STEP_DURATION: 	f32 = 0.01;

pub fn framed_mfcc(samples: &[f32], sample_rate: f32) -> Vec<Vec<f32>>
{
	let frames = frames(samples, sample_rate);
	let mut a = Vec::with_capacity(frames.len());
	for i in 0..frames.len()
	{
		a.push(mfcc(&frames[i], sample_rate));
	}
	a
}

pub fn distance_to_framed_mfcc(samples_a: &[f32], framed: &Vec<Vec<f32>>, sample_rate: f32) -> f32
{
	let frames_a = frames(samples_a, sample_rate);
	assert!(frames_a.len() == framed.len());
	let mut sum = 0f32;
	for i in 0..frames_a.len()
	{
		let mfcc_a = mfcc(&frames_a[i], sample_rate);
		for j in 0..mfcc_a.len()
		{
			sum += (mfcc_a[j] - framed[i][j]).powi(2);
		}
	}
	sum
}

pub fn distance_between(samples_a: &[f32], samples_b: &[f32], sample_rate: f32) -> f32
{
	let frames_a = frames(samples_a, sample_rate);
	let frames_b = frames(samples_b, sample_rate);
	let mut sum = 0f32;
	for i in 0..frames_a.len()
	{
		let mfcc_a = mfcc(&frames_a[i], sample_rate);
		let mfcc_b = mfcc(&frames_b[i], sample_rate);
		for j in 0..mfcc_a.len()
		{
			sum += (mfcc_a[j] - mfcc_b[j]).powi(2);
		}
	}
	sum
}

fn frames(samples: &[f32], samplerate: f32) -> Vec<Vec<f32>>
{
	let nsamples_frame = (FRAME_DURATION*samplerate) as usize;
	let nsamples_step = (STEP_DURATION*samplerate) as usize;

	let mut frames = vec![];
	let mut start = 0;
	while start + nsamples_frame < samples.len()
	{
		frames.push(samples[start..start+nsamples_frame].to_vec());
		start += nsamples_step;
	}
	let mut last = samples[start..].to_vec();
	last.resize(nsamples_frame, 0f32);
	frames.push(last);
	frames
}

fn mfcc(frame: &[f32], samplerate: f32) -> Vec<f32>
{
	let fft_size = pow2_roundup(frame.len());
	let filter_size = fft_size/2+1;
	let filterbank = filterbank(26, fft_size, filter_size, samplerate);
	let spectrum = spectrum(frame).into_iter().take(filter_size).collect::<Vec<f32>>();
	let energies: Vec<f64> = energies(filterbank, spectrum).iter().map(|x| *x as f64).collect();
	stream_dct::DCT1D::new(&energies[..]).take(12).map(|x| x as f32).collect::<Vec<f32>>()
}

fn pow2_roundup(mut x: usize) -> usize
{
    x -= 1;
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    return x+1;
}

fn freq_to_mel(f: f32) -> f32
{
	1125.0*(1.0 + f/700.0).ln()
}

fn mel_to_freq(m: f32) -> f32
{
	((m/1125.0).exp() - 1.0) * 700.0
}

fn freq_to_bucket(f: f32, fft_size: usize, samplerate: f32) -> i32
{
	((fft_size as f32 + 1.0)*f/samplerate).floor() as i32
}

fn filter(filter_size: usize, mbot: f32, mzen: f32, mtop: f32) -> Vec<f32>
{
	let mut filter = vec![0f32; filter_size];
	for kx in 0..filter.len()
	{
		let k = kx as f32;
		if k < mbot { continue; }
		else if k > mbot && k < mzen { filter[kx] = (k-mbot)/(mzen-mbot); }
		else if k > mzen && k < mtop { filter[kx] = (mtop-k)/(mtop-mzen); }
		else { continue; }
	}
	filter
}

fn filterbank(nfilters: usize, fft_size: usize, filter_size: usize, samplerate: f32) -> Vec<Vec<f32>> 
{
	let mut filterbank = [0; 26];

	let mel_lower = freq_to_mel(LOWER_FREQ);
	let mel_upper = freq_to_mel(UPPER_FREQ);
	let mel_step = (mel_upper - mel_lower) / 11.0;

	let freq = (0..nfilters+2).map(move |x| mel_to_freq(mel_lower+(x as f32)*mel_step));
	let buckets: Vec<i32> = freq.map(move |x| freq_to_bucket(x, fft_size, samplerate)).collect();

	let mut filterbank = vec![];
	for m in 1..nfilters+1
	{
		filterbank.push(filter(filter_size, buckets[m-1] as f32, buckets[m] as f32, buckets[m+1] as f32));
	}
	filterbank
}

fn spectrum(frame: &[f32]) -> Vec<f32>
{
	let mut fft = FFT::new(frame.len(), false);
	let signal = frame.iter().map(|x| Complex::new(*x, 0f32)).collect::<Vec<_>>();
	let mut spectrum = signal.clone();
	fft.process(&signal[..], &mut spectrum[..]);
	spectrum.iter().map(|x| x.norm_sqr()).collect::<Vec<f32>>()
}

fn energies(filterbank: Vec<Vec<f32>>, spectrum: Vec<f32>) -> Vec<f32>
{
	let mut ener = Vec::with_capacity(filterbank.len());
	for filter in filterbank.iter()
	{
		let val: f32 = filter.into_iter().zip(spectrum.clone().into_iter()).map(|(x, y)| x*y).sum();
		ener.push(if val > 0.0 { val.ln() } else { 0.0 });
	}
	ener
}

#[cfg(test)]
mod unit_tests {
	use super::*;

	use rand::{thread_rng, Rng};
	use std::f32;

	#[test]
	fn test_wave_comparison()
	{
		let samplerate = 16000.0;

		let mut rng_a = thread_rng();
		let rng_factor_a = 0.0;

		let wave_a: Vec<f32> = (0u64..samplerate as u64).map(move |t| t as f32 * 440.0 * 2.0*f32::consts::PI / samplerate).map(move |t| (t.sin() + rng_factor_a*(rng_a.gen::<f32>()*2.0-1.0)) * 0.1).collect();

		for z in 0..10
		{
			// if z % 50 == 0 { println!("{}", z); }
			
			let mut rng_b = thread_rng();
			let mut rng_c = thread_rng();

			let rng_factor_b = rng_b.gen::<f32>();
			let rng_factor_c = rng_c.gen::<f32>();

			let wave_b: Vec<f32> = (0u64..samplerate as u64).map(move |t| t as f32 * 440.0 * 2.0*f32::consts::PI / samplerate).map(move |t| (t.sin() + rng_factor_b*(rng_b.gen::<f32>()*2.0-1.0)) * 0.1).collect();
			let wave_c: Vec<f32> = (0u64..samplerate as u64).map(move |t| t as f32 * 440.0 * 2.0*f32::consts::PI / samplerate).map(move |t| (t.sin() + rng_factor_c*(rng_c.gen::<f32>()*2.0-1.0)) * 0.1).collect();

			let mfcc_a = framed_mfcc(&wave_a, samplerate);
			let dist_ab = distance_to_framed_mfcc(
				&wave_b,
				&mfcc_a,
				samplerate);
			let dist_ac = distance_to_framed_mfcc(
				&wave_c,
				&mfcc_a,
				samplerate);
			let dist_bc = distance_between(
				&wave_b, 
				&wave_c,
				samplerate);

			let pass = ((rng_factor_a - rng_factor_b).abs() > (rng_factor_a - rng_factor_c).abs()) == (dist_ab.abs() > dist_ac.abs());

			if !pass 
			{
				println!("--rng factors");
				println!("{:?}", rng_factor_a);
				println!("{:?}", rng_factor_b);
				println!("{:?}", rng_factor_c);
				println!("--rng deltas");
				println!("{:?}", (rng_factor_a - rng_factor_b).abs());
				println!("{:?}", (rng_factor_a - rng_factor_c).abs());
				println!("{:?}", (rng_factor_b - rng_factor_c).abs());
				println!("--sum deltas");
				println!("{:?}", dist_ab.abs());
				println!("{:?}", dist_ac.abs());
				println!("{:?}", dist_bc.abs());
			}
			assert!(pass);
		}		
	}
}