Struct wasmtime_wiggle::bitflags::_core::marker::PhantomData1.0.0[][src]

pub struct PhantomData<T>
where
    T: ?Sized
;
Expand description

Zero-sized type used to mark things that “act like” they own a T.

Adding a PhantomData<T> field to your type tells the compiler that your type acts as though it stores a value of type T, even though it doesn’t really. This information is used when computing certain safety properties.

For a more in-depth explanation of how to use PhantomData<T>, please see the Nomicon.

A ghastly note 👻👻👻

Though they both have scary names, PhantomData and ‘phantom types’ are related, but not identical. A phantom type parameter is simply a type parameter which is never used. In Rust, this often causes the compiler to complain, and the solution is to add a “dummy” use by way of PhantomData.

Examples

Unused lifetime parameters

Perhaps the most common use case for PhantomData is a struct that has an unused lifetime parameter, typically as part of some unsafe code. For example, here is a struct Slice that has two pointers of type *const T, presumably pointing into an array somewhere:

struct Slice<'a, T> {
    start: *const T,
    end: *const T,
}

The intention is that the underlying data is only valid for the lifetime 'a, so Slice should not outlive 'a. However, this intent is not expressed in the code, since there are no uses of the lifetime 'a and hence it is not clear what data it applies to. We can correct this by telling the compiler to act as if the Slice struct contained a reference &'a T:

use std::marker::PhantomData;

struct Slice<'a, T: 'a> {
    start: *const T,
    end: *const T,
    phantom: PhantomData<&'a T>,
}

This also in turn requires the annotation T: 'a, indicating that any references in T are valid over the lifetime 'a.

When initializing a Slice you simply provide the value PhantomData for the field phantom:

fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
    let ptr = vec.as_ptr();
    Slice {
        start: ptr,
        end: unsafe { ptr.add(vec.len()) },
        phantom: PhantomData,
    }
}

Unused type parameters

It sometimes happens that you have unused type parameters which indicate what type of data a struct is “tied” to, even though that data is not actually found in the struct itself. Here is an example where this arises with FFI. The foreign interface uses handles of type *mut () to refer to Rust values of different types. We track the Rust type using a phantom type parameter on the struct ExternalResource which wraps a handle.

use std::marker::PhantomData;
use std::mem;

struct ExternalResource<R> {
   resource_handle: *mut (),
   resource_type: PhantomData<R>,
}

impl<R: ResType> ExternalResource<R> {
    fn new() -> Self {
        let size_of_res = mem::size_of::<R>();
        Self {
            resource_handle: foreign_lib::new(size_of_res),
            resource_type: PhantomData,
        }
    }

    fn do_stuff(&self, param: ParamType) {
        let foreign_params = convert_params(param);
        foreign_lib::do_stuff(self.resource_handle, foreign_params);
    }
}

Ownership and the drop check

Adding a field of type PhantomData<T> indicates that your type owns data of type T. This in turn implies that when your type is dropped, it may drop one or more instances of the type T. This has bearing on the Rust compiler’s drop check analysis.

If your struct does not in fact own the data of type T, it is better to use a reference type, like PhantomData<&'a T> (ideally) or PhantomData<*const T> (if no lifetime applies), so as not to indicate ownership.

Trait Implementations

impl<T> Clone for PhantomData<T> where
    T: ?Sized
[src]

pub fn clone(&self) -> PhantomData<T>[src]

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)[src]

Performs copy-assignment from source. Read more

impl<T> Debug for PhantomData<T> where
    T: ?Sized
[src]

pub fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>[src]

Formats the value using the given formatter. Read more

impl<T> Default for PhantomData<T> where
    T: ?Sized
[src]

pub fn default() -> PhantomData<T>[src]

Returns the “default value” for a type. Read more

impl<'de, T> Deserialize<'de> for PhantomData<T> where
    T: ?Sized
[src]

pub fn deserialize<D>(
    deserializer: D
) -> Result<PhantomData<T>, <D as Deserializer<'de>>::Error> where
    D: Deserializer<'de>, 
[src]

Deserialize this value from the given Serde deserializer. Read more

impl<'de, T> DeserializeSeed<'de> for PhantomData<T> where
    T: Deserialize<'de>, 
[src]

type Value = T

The type produced by using this seed.

pub fn deserialize<D>(
    self,
    deserializer: D
) -> Result<T, <D as Deserializer<'de>>::Error> where
    D: Deserializer<'de>, 
[src]

Equivalent to the more common Deserialize::deserialize method, except with some initial piece of data (the seed) passed in. Read more

impl<T> Hash for PhantomData<T> where
    T: ?Sized
[src]

pub fn hash<H>(&self, &mut H) where
    H: Hasher
[src]

Feeds this value into the given Hasher. Read more

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given Hasher. Read more

impl<T> Ord for PhantomData<T> where
    T: ?Sized
[src]

pub fn cmp(&self, _other: &PhantomData<T>) -> Ordering[src]

This method returns an Ordering between self and other. Read more

#[must_use]
fn max(self, other: Self) -> Self
1.21.0[src]

Compares and returns the maximum of two values. Read more

#[must_use]
fn min(self, other: Self) -> Self
1.21.0[src]

Compares and returns the minimum of two values. Read more

#[must_use]
fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]

Restrict a value to a certain interval. Read more

impl<T> PartialEq<PhantomData<T>> for PhantomData<T> where
    T: ?Sized
[src]

pub fn eq(&self, _other: &PhantomData<T>) -> bool[src]

This method tests for self and other values to be equal, and is used by ==. Read more

#[must_use]
fn ne(&self, other: &Rhs) -> bool
[src]

This method tests for !=.

impl<T> PartialOrd<PhantomData<T>> for PhantomData<T> where
    T: ?Sized
[src]

pub fn partial_cmp(&self, _other: &PhantomData<T>) -> Option<Ordering>[src]

This method returns an ordering between self and other values if one exists. Read more

#[must_use]
fn lt(&self, other: &Rhs) -> bool
[src]

This method tests less than (for self and other) and is used by the < operator. Read more

#[must_use]
fn le(&self, other: &Rhs) -> bool
[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

#[must_use]
fn gt(&self, other: &Rhs) -> bool
[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

#[must_use]
fn ge(&self, other: &Rhs) -> bool
[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl<T> Serialize for PhantomData<T> where
    T: ?Sized
[src]

pub fn serialize<S>(
    &self,
    serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
    S: Serializer
[src]

Serialize this value into the given Serde serializer. Read more

impl<T> Copy for PhantomData<T> where
    T: ?Sized
[src]

impl<T> Eq for PhantomData<T> where
    T: ?Sized
[src]

impl<T> StructuralEq for PhantomData<T> where
    T: ?Sized
[src]

impl<T> StructuralPartialEq for PhantomData<T> where
    T: ?Sized
[src]

Auto Trait Implementations

impl<T: ?Sized> RefUnwindSafe for PhantomData<T> where
    T: RefUnwindSafe

impl<T: ?Sized> Send for PhantomData<T> where
    T: Send

impl<T: ?Sized> Sync for PhantomData<T> where
    T: Sync

impl<T: ?Sized> Unpin for PhantomData<T> where
    T: Unpin

impl<T: ?Sized> UnwindSafe for PhantomData<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<Q, K> Equivalent<K> for Q where
    K: Borrow<Q> + ?Sized,
    Q: Eq + ?Sized
[src]

pub fn equivalent(&self, key: &K) -> bool[src]

Compare self to key and return true if they are equal.

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T> Instrument for T[src]

fn instrument(self, span: Span) -> Instrumented<Self>

Notable traits for Instrumented<T>

impl<T> Future for Instrumented<T> where
    T: Future
type Output = <T as Future>::Output;
[src]

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

fn in_current_span(self) -> Instrumented<Self>

Notable traits for Instrumented<T>

impl<T> Future for Instrumented<T> where
    T: Future
type Output = <T as Future>::Output;
[src]

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pointee for T[src]

type Pointer = u32

pub fn debug(
    pointer: <T as Pointee>::Pointer,
    f: &mut Formatter<'_>
) -> Result<(), Error>
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

pub fn to_owned(&self) -> T[src]

Creates owned data from borrowed data, usually by cloning. Read more

pub fn clone_into(&self, target: &mut T)[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 

pub fn vzip(self) -> V

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]